Схемы контроля и управления параметрами технологических процессов. Регулирование основных технологических параметров. Структурные схемы объекта регулирования

Основные технологические параметры, характеризующие химико-технологические процессы - это расход, уровень, давление, температура, рН, а также параметры качества: концентрация готового продукта и его физико-химические свойства (плотность, вязкость, влажность и др.).

Регулирование расхода

При регулировании расхода нужно учитывать некоторые особенности, не присущие обычно системам регулирования других технологических параметров. Первая особенность - небольшая (обычно пренебрежимо малая) инерционность объекта регулирования, который представляет собой, как правило, участок трубопровода между первичным измерительным преобразователем для измерения расхода и регулирующим органом. После перемещения штока регулирующего органа в новое положение новое значение расхода устанавливается за доли секунды или, в крайнем случае, за несколько секунд. Это означает, что динамические характеристики системы определяются главным образом инерционностью измерительного устройства, регулятора, исполнительного устройства и линией передачи сигнала (импульсных линий). Вторая особенность проявляется в том, что сигнал, соответствующий измеренному значению расхода, всегда содержит помехи, уровень которых высок. Частично шум представляет собой физические колебания расхода, частота которых настолько велика, что система не успевает на них реагировать. Наличие высокочастотных составляющих в сигнате изменения расхода - результат пульсаций давления в трубопроводе, которые в свою очередь являются следствием работы насосов, компрессоров, случайных колебаний расхода, например, при дросселировании потока через сужающее устройство. Поэтому при наличии шума, чтобы избежать усиления в системе случайных возмущений, следует применять малые значения коэффициента усиления регулятора.

Рассмотрим объект регулирования расхода - участок трубопровода 1, расположенный между местом измерения расхода (местом установки первичного измерительного преобразователя, например диафрагмы 2) и регулирующим органом 3 (рис. 1). Длина прямого участка трубопровода определяется правилами установки нормальных сужающих устройств и регулирующих органов и может составить несколько метров. Динамику объекта (трубопровода) - канала расход вещества через регулирующий клапан-расход вещества через расходомер - можно представить статическим зве-

Рис. 1. Фрагмент системы регулирования расхода.

ном первого порядка с транспортным запаздыванием. Значение постоянной времени составляет несколько секунд; время транспортного запаздывания для газа - доли секунды, для жидкости - несколько секунд.



Поскольку инерционность объекта при регулировании расхода незначительна, к выбору технических средств управления и методов расчета АСУ предъявляются повышенные требования.

Большинство современных первичных измерительных преобразователей расхода возможно рассматривать как статические звенья нулевого порядка, а исполнительное устройство (исполнительный механизм вместе с регулирующим органом) - как статическое звено первого порядка с постоянной времени Т в несколько секунд. Для повышения быстродействия пневматического исполнительного устройства применяют позиционеры. Пневматические линии связи представляют статическим звеном первого порядка с транспортным запаздыванием (постоянная времени Т и время транспортного запаздывания определяются длиной линии связи и составляют несколько секунд).

Если расстояния между функциональными элементами системы управления велики, то по длине импульсной линии устанавливают дополнительные усилители мощности, чтобы увеличить быстродействие системы.

В системах регулирования расхода применяют различные способы изменения расхода:

дросселирование потока вещества через регулирующий орган (клапан, заслонка, шибер и др.), установленный на трубопроводе;

изменение угловой скорости вращения рабочего вала насоса или вентилятора;

байпасирование потока (под байпасированием понимается переброс части вещества из основной магистрали в обводную линию).

АВТОМАТИЗАЦИЯ ТИПОВЫХ ТЕХНОЛОГИЧЕСКИХ ПРОЦЕССОВ

2.1. ПОСЛЕДОВАТЕЛЬНОСТЬ ВЫБОРА СИСТЕМЫ АВТОМАТИЗАЦИИ*

Общая задача управления технологическим процессом формули­руется обычно как задача максимизации (минимизации) неко­торого критерия (себестоимости, энергозатрат, прибыли) при выполнении ограничений на технологические параметры, накла­дываемых регламентом. Решение такой задачи для всего про­цесса в целом очень трудоемко, а иногда практически невоз­можно ввиду большого числа факторов, влияющих на ход про­цесса. Поэтому весь процесс разбивают на отдельные участки,. которые характеризуются сравнительно небольшим числом пере-

,*В данной главе рассматриваются наиболее характерные особенности регулирования основных технологических параметров и процессов. На основе-уравнении материального и теплового баланса аппаратов проводится анализ их как объектов регулирования и дается выбор вариантов систем регулирова­ния, начиная с простейших одноконтурных АСР с постепенным усложнением схем. В разделах, посвященных автоматизации реакторов, теплообменников и ректификационных колонн, на примере простейших аппаратов иллюстриру­ется методика вывода линеаризованных моделей статики и динамики техноло­гических объектов с сосредоточенными и распределенными параметрами, кото­рые могут быть использованы при расчете систем регулирования.

менных. Обычно эти участки совпадают с законченными техно­логическими стадиями, для которых могут быть сформулиро­ваны свои подзадачи управления, подчиненные общей задаче управления процессом в целом.


Задачи управления отдельными стадиями обычно направле-.ны на оптимизацию (в частном случае, стабилизацию) техноло­гического параметра или критерия, легко вычисляемого по из­меренным режимным параметрам (производительность, кон-.центрация продукта, степень превращения, расход энергии). Оптимизацию критерия проводят в рамках ограничений, задавае­мых технологическим регламентом. На основании задачи опти­мального управления отдельными стадиями процесса формули­руют задачи автоматического регулирования технологических параметров для отдельных аппаратов.

Важным этапом в разработке системы автоматизации явля­ется анализ основных аппаратов как объектов регулирования, т. е. выявление всех существенных входных и выходных перемен­ных и анализ статических и динамических характеристик кана­лов возмущения и регулирования. Исходными данными при этом служат математическая модель процесса и (как первое прибли­жение) статическая модель в виде уравнений материального и теплового балансов. На основе этих уравнений с учетом реаль­ных условий работы аппарата все существенные факторы, влияющие на процесс, разбиваются на следующие группы.

Возмущения, допускающие стабилизацию. К ним относят независимые технологические параметры, кото­рые могут испытывать существенные колебания, однако по ус­ловиям работы могут быть стабилизированы с помощью авто­матической системы регулирования. К таким параметрам обыч­но относятся некоторые показатели входных потоков. Так, рас­ход питания можно стабилизировать, если перед аппаратом имеется буферная емкость, сглаживающая колебания расхода на выходе из предыдущего аппарата; стабилизация температу­ры питания возможна, если перед аппаратом установлен тепло­обменник, и т. п. Очевидно, при проектировании системы управ­ления целесообразно предусмотреть автоматическую стабилиза­цию таких возмущений. Это позволит повысить качество управ­ления процессом в целом. В простейших случаях на основе таких систем автоматической стабилизации возмущений строят разомкнутую (относительно основного показателя процесса) си­стему автоматизации, обеспечивающую устойчивое ведение про-.цесса в рамках технологического регламента.

Контролируемые возмущения. К ним условно от­носят те возмущения, которые можно измерить, но невозможно или недопустимо стабилизировать (расход питания, подаваемо­го непосредственно из предыдущего аппарата; температура ок­ружающей среды и т. п.). Наличие существенных нестабилизи­руемых возмущений требует применения либо замкнутых по основному показателю процесса систем регулирования, либо

комбинированных АСР, в которых качество регулирования по­вышается введением динамической компенсации возмущения.

Неконтролируемые возмущения. К ним относятся те возмущения, которые невозможно или нецелесообразно изме­рять непосредственно. Первые - это падение активности ката­лизатора, изменение коэффициентов тепло - и массопередачи и т. п. Примером вторых может служить давление греющего пара в заводской сети, которое колеблется случайным образом и является источником возмущения в тепловых процессах. Вы­явление возможных неконтролируемых возмущений - важный этап в исследовании процесса и разработке системы управления. Наличие таких возмущений требует, как и в предыдущем слу­чае, обязательного применения замкнутых по основному пока­зателю процесса систем автоматизации.

Возможные регулирующие воздействия. Это материальные или тепловые потоки, которые можно изменять автоматически для поддержания регулируемых параметров.

Выходные переменные. Из их числа выбирают ре­гулируемые координаты. При построении замкнутых систем ре­гулирования в качестве регулируемых координат выбирают тех­нологические параметры, изменение которых свидетельствует о нарушении материального или теплового баланса в аппарате. К ним относятся: уровень жидкости - показатель баланса по жидкой фазе; давление - показатель баланса по газовой фазе; температура - показатель теплового баланса в аппарате; кон- " центрация - показатель материального баланса по компоненту.


Анализ возможных регулирующих воздействий и выходных координат объекта позволяет выбрать каналы регулирования для проектируемых АСР. При этом в одних случаях решение определяется однозначно, а в других имеется возможность вы­бора как регулируемой координаты, так и регулирующего воз­действия для заданного выхода. Окончательный выбор каналов регулирования проводят па основе сравнительного анализа ста­тических и динамических характеристик различных каналов. При этом учитывают такие показатели, как коэффициент уси­ления, время чистого запаздывания, его отношение к наиболь­шей постоянной времени канала t(см. разд. 1.4).

На основе анализа технологического процесса как объекта регулирования проектируют систему автоматизации, обеспечи­вающую решение поставленной задачи регулирования. Начина­ют с проектирования одноконтурных АСР отдельных парамет­ ров: они наиболее просты в наладке и надежны в работе, по­этому широко используются при автоматизации технологических объектов.

Однако при неблагоприятных динамических характеристи­ках каналов регулирования (большом чистом запаздывании, большом отношении т/Г) даже в случае оптимальных настроек регуляторов качество переходных процессов в одноконтурных АСР может оказаться неудовлетворительным. Для таких объ-

ектов анализируют возможность построения многоконтурных АСР, в которых качество регулирования можно повысить, ус­ложняя схемы автоматизации, т. е. применяя каскадные, ком­бинированные, взаимосвязанные АСР.

Окончательное решение о применении той или иной схемы ав­томатизации принимают после моделирования различных АСР и сравнения качества получаемых процессов регулирования.

2.2. РЕГУЛИРОВАНИЕ ОСНОВНЫХ ТЕХНОЛОГИЧЕСКИХ ПАРАМЕТРОВ

К основным технологическим параметрам, подлежащим контро­лю и регулированию в химико-технологических процессах, отно­сят расход, уровень, давление, температуру, значение рН и по­казатели качества (концентрацию, плотность, вязкость и др.)*. Регулирование расхода. Необходимость регулирования расхода возникает при автоматизации практически любого непрерывно­го процесса. АСР расхода, предназначенные для стабилизации возмущений по материальным потокам, являются неотъемлемой частью разомкнутых систем автоматизации технологических про­цессов. Часто АСР расхода используют как внутренние конту­ры в каскадных системах регулирования других параметров. Для обеспечения заданного состава смеси или для поддержания материального и теплового балансов в аппарате применяют си­стемы регулирования соотношения расходов нескольких веществ в одноконтурных или каскадных АСР.

Системы регулирования расхода характеризуются двумя особенностями: малой инерционностью собственно объекта регу­лирования; наличием высокочастотных составляющих в сигна­ле изменения расхода, обусловленных пульсациями давления в трубопроводе (последние вызваны работой насосов или комп­рессоров или случайными колебаниями расхода при дроссели­ровании потока через сужающее устройство).

На рис. 2.1 дана принципиальная схема объекта при регули­ровании расхода. Обычно таким объектом является участок тру­бопровода между точкой измерения расхода (например, местом установки сужающего устройства 1) и регулирующим орга­ном 2. Длина этого участка определяется правилами установки сужающих устройств и регулирующих органов и составляет обычно несколько метров. Динамика канала «расход вещества через клапан - расход вещества через расходомер» приближен­но описывается апериодическим звеном первого порядка с чи­стым запаздыванием. Время чистого запаздывания обычно со-

· Основы измерения этих параметров, автоматические приборы контроля и исполнительные устройства изучают в курсах «Технологические измерения и приборы> и «Технические средства автоматизации». Здесь рассмотрены осо­бенности регулирования этих параметров с учетом статических и динамиче­ских характеристик каналов регулирования, приборов контроля и средств автоматизации и приведены примеры наиболее распространенных систем ре­гулирования некоторых параметров.

ставляет доли секунд для газа и несколько секунд - для жид­кости; значение постоянной времени - несколько секунд.

Ввиду малой инерционности объекта регулирования особые требования предъявляются к выбору средств автоматизации и методов расчета АСР. В частности, в промышленных установках инерционность цепей контроля и регулирования расхода стано­вится соизмеримой с инерционностью объекта, и ее следует учи­тывать при расчете систем регулирования.

Приближенная оценка чистого запаздывания и постоянных времени отдельных элементов цепи показывает (рис. 2.2), что современные первичные преобразователи расхода, построенные на принципе динамической компенсации, можно рассматривать как усилительные звенья. Исполнительное устройство аппрокси­мируется апериодическим звеном первого порядка, постоянная времени которого составляет несколько секунд, причем быстро­действие исполнительного устройства существенно повышается при использовании позиционеров. Импульсные линии, связы­вающие средства контроля и регулирования, аппроксимируются апериодическим звеном первого порядка с чистым запаздыва­нием, параметры которого определяются длиной линии и лежат в пределах нескольких секунд. При больших расстояниях меж­ду элементами цепи необходимо по длине импульсной линии устанавливать дополнительные усилители мощности.

4 Вследствие малой инерционности объекта рабочая частота может оказаться выше максимальной, ограничивающей область нормальной работы промышленного регулятора, в пределах ко­торой реализуются стандартные законы регулирования. За пре­делами этой области динамические характеристики регуляторов отличаются от стандартных, вследствие чего требуется введение поправок на рабочие настройки с учетом фактических законов регулирования.

1 Выбор законов регулирования диктуется обычно требуемым качеством переходных процессов. Для регулирования расхода


без статической погрешности в од­ноконтурных АСР применяют ПИ - регуляторы. Если АСР расхода яв­ляется внутренним контуром в кас­кадной системе регулирования, ре-

гулятор расхода может осуществлять П-закон регулирования. При наличии высокочастотных помех в сигнале расхода приме­нение регуляторов с дифференциальными составляющими в за­коне регулирования без предварительного сглаживания сигнала может привести к неустойчивой работе системы. Поэтому в про­мышленных АСР расхода применение ПД - или ПИД-регулято-ров не рекомендуется.

В системах регулирования расхода применяют один из трех способов изменения расхода:

дросселирование потока вещества через регулирующий ор­ган, устанавливаемый на трубопроводе (клапан, шибер, за­слонка);

изменение напора в трубопроводе с помощью регулируемого источника энергии (например, изменением числа оборотов дви­гателя насоса или угла поворота лопастей вентилятора);

байпасирование, т. е. переброс избытка вещества из основ­ного трубопровода в обводную линию.

Регулирование расхода после центробежного насоса осу­ществляется регулирующим клапаном, устанавливаемым на на­гнетательном трубопроводе (рис. 2.3,а). Если для перекачива­ния жидкости используют поршневой насос, применение подоб­ной АСР недопустимо, так как при работе регулятора клапан может закрыться полностью, что приведет к разрыву трубопро­вода (или к помпажу, если клапан установлен на всасе насоса). В этом случае для регулирования расхода используют байпаси­рование потока (рис. 2.3,6).

Регулирование расхода сыпучих веществ осуществляется из­менением степени открытия регулирующей заслонки на выходе из бункера (рис. 2.4, а) или изменением скорости движения лен­ты транспортера (рис. 2.4,6). Измерителем расхода при этом может служить взвешивающее устройство, которое определяет массу материала на ленте транспортера.

Регулирование соотношения расходов двух веществ можно осуществлять по одной из трех схем, описанных ниже.

1. При незаданной общей производительности расход одного вещества (рис. 2.5, a) G 1, называемый «ведущим», может ме­няться произвольно; второе вещество подается при постоянном соотношении у с первым, так что «ведомый» расход равен yg1.


Рис. 2.4. Схемы регулирования расхода сыпучих веществ:

а - изменением степени открытия регулирующей заслонки; б - изменением скорости дви-уычшя транспортера, 1 - бункер; 2 - транспортер; 3 - регулятор; 4 - регулирующая за­слонка; 5 - электродвигатель

Иногда вместо регулятора соотношения используют реле соот­ ношения и обычный регулятор для одной переменной (рис. 2.5,б). Выходной сигнал реле 6, устанавливающего задан­ный коэффициент соотношения y , подается в виде задания регу­ лятору 5, обеспечивающему поддержание «ведомого» расхода.

2. При заданном «ведущем» расходе кроме АСР соотноше­ ния применяют и АСР «ведущего» расхода (рис. 2.5,в). При та­ кой схеме в случае изменения задания по расходу g 1 автомати­ чески изменится и расход gz (в заданном соотношении с g 1).

3. АСР соотношения расходов является внутренним конту­ ром в каскадной системе регулирования третьего технологиче­ ского параметра у (например, температуры в аппарате). При


Рис. 2.5. Схемы регулирования соотношения расходов:

а, б - при незаданной общей нагрузке, в - при заданной общей нагрузке, г - при за­данной общей нагрузке и коррекции коэффициента соотношения по третьему параметру; /, 2 - измерители расхода, 3 - регулятор соотношения; 4, 7 - регулирующие клапаны; 5 - регулятор расхода, 6 - реле соотношения, 8 - регулятор температуры; 9 - устрой­ство ограничения

этом заданный коэффициент соотношения устанавливается внешним регулятором в зависимости от этого параметра так что G2 = y (y ) G 1 (рис. 2.5, г). Как отмечалось выше, особенность па-стройки каскадных АСР состоит в том, что на задание внутрен­нему регулятору устанавливают ограничение xph [хрн, xpB ], то задание регулятору соотношения оста­ется на предельно допустимом значении у (т. е. yн или yb)-Регулирование уровня. Уровень является косвенным показатe-лем гидродинамического равновесия в аппарате. Постоянство уровня свидетельствует о соблюдении материального баланса, когда приток жидкости равен стоку, и скорость изменения уров­ня равна нулю. Следует отметить, что «приток» и «сток» здесь являются обобщенными понятиями. В простейшем случае, когда в аппарате не происходят фазовые превращения (сборники, про­межуточные емкости, жидкофазные реакторы), приток равен расходу жидкости, подаваемой в аппарат, а сток - расходу жидкости, отводимой из аппарата. В более сложных процессах, сопровождающихся изменением фазового состояния веществ, уровень является характеристикой не только гидравлических, но и тепловых и массообменных процессов, а приток и сток учи­тывают фазовые превращения веществ. Такие процессы проте­кают в испарителях, конденсаторах, выпарных установках, рек­тификационных колоннах и т. п.

В общем случае изменение уровня описывается уравнением вида


где S- площадь горизонтального (свободного) сечения аппарата; Gвx, Gвых-расходы жидкости на входе в аппарат и выходе из него; Gоб - ко­личество жидкости, образующейся (или расходуемой) в аппарате в единицу времени.

В зависимости от требуемой точности поддержания уровня применяют один из следующих двух способов регулирования:

1) позиционное регулирование, при котором уровень в аппа­рате поддерживается в заданных, достаточно широких преде-

лах: lh

Рис. 2.6. Пример схемы пози­ционного регулирования уров­ня:

1 - насос; 2 - аппарат, 3 - сигна­лизатор уровня; 4 - регулятор уров­ ня, 5, 6 - регулирующие клапаны

Рис 2 7. Схемы непрерывного регулирования уровня:

а - регулирование «на притоке»; б - регулирование «на стоке», в - каскадная АСР; 1~ регулятор уровня, 2 - регулирующий клапан; 3, 4 - измерители расхода, 5 - регулятор соотношения

(рис. 2.6). При достижении предельного значения уровня проис­ходит автоматическое переключение потока на запасную ем­кость;

2) непрерывное регулирование, при котором обеспечивается стабилизация уровня на заданном значении, т. е. L = L °.

Особенно высокие требования предъявляются к точности ре­гулирования уровня в теплообменных аппаратах, в которых уро­вень жидкости существенно влияет на тепловые процессы. На­пример, в паровых теплообменниках уровень конденсата опреде­ляет фактическую поверхность теплообмена. В таких АСР для регулирования уровня без статической погрешности применяют ПИ-регуляторы. П-регуляторы используют лишь в тех случаях, когда не требуется высокое качество регулирования и возмуще­ния в системе не имеют постоянной составляющей, которая мо­жет привести к накоплению статической погрешности.

При отсутствии фазовых превращений в аппарате уровень в нем регулируют одним из трех способов:

изменением расхода жидкости на входе в аппарат (регули­рование «на притоке», рис. 2.7, а);

изменением расхода жидкости на выходе из аппарата (регу­лирование «на стоке», рис. 2.7,6);

регулированием соотношения расходов жидкости на входе в аппарат и выходе из него с коррекцией по уровню (каскадная АСР, рис. 2.7,в); отключение корректирующего контура может привести к накоплению ошибки при регулировании уровня, так как вследствие неизбежных погрешностей в настройке регулято­ра соотношения расходы жидкости на входе и выходе аппарата не будут точно равны друг другу и вследствие интегрирующих свойств объекта [см. уравнение (2.1)] уровень в аппарате будет непрерывно нарастать (или убывать).

В случае, когда гидродинамические процессы в аппарате со­провождаются фазовыми превращениями, можно регулировать уровень изменением подачи теплоносителя (или хладоагента), как это показано на рис. 2.8. В таких аппаратах уровень взаи­мосвязан с другими параметрами (например, давлением), по­этому выбор способа регулирования уровня в каждом конкрет-

Рис. 2.8. Схема регулирования уровня в испарителе:

1 - испаритель; 2 - регулятор уровня; 3 - регулирующий клапан

Рис. 2.9. Регулирование уровня кипящего слоя:

а - отводом зернистого материала; б - изменением расхода газа; 1 - аппарат с кипя­щим слоем; 2 - регулятор уровня; 3 - регулирующий орган

ном случае должен выполняться с учетом остальных контуров регулирования.

Особое место в системах регулирования уровня занимают АСР уровня в аппаратах с кипящим (псевдоожиженным) слоем зернистого материала. Устойчивое поддержание уровня кипя­щего слоя возможно в достаточно узких пределах соотношения расхода газа и массы слоя. При значительных колебаниях рас­хода газа (или расхода зернистого материала) наступает ре­жим уноса слоя или его оседания. Поэтому к точности регули­рования уровня кипящего слоя предъявляют особенно высокие требования. В качестве регулирующих воздействий используют расход зернистого материала на входе или выходе аппарата (рис. 2.9, а) или расход газа на ожижение слоя (рис. 2.9,6). Регулирование давления. Давление является показателем соот­ношения расходов газовой фазы на входе в аппарат и выходе из него. Постоянство давления свидетельствует о соблюдении ма­териального баланса по газовой фазе. Обычно давление (или разрежение) в технологической установке стабилизируют в ка­ком-либо одном аппарате, а по всей системе оно устанавлива­ется в соответствии с гидравлическим сопротивлением линии и аппаратов. Например, в многокорпусной выпарной установке (рис. 2.10) стабилизируют разрежение в последнем выпарном аппарате. В остальных аппаратах при отсутствии возмущений устанавливается разрежение, которое определяется из условий материального и теплового балансов с учетом гидравлического сопротивления технологической линии.

В тех случаях, когда давление существенно влияет на кине­тику процесса, предусматривается система стабилизации давле­ния в отдельных аппаратах. Примером может служить процесс ректификации, для которого кривая фазового равновесия су­щественно зависит от давления. Кроме того, при регулировании процесса бинарной ректификации часто в качестве косвенного

показателя состава смеси используют ее температуру кипения, которая однозначно связана с составом лишь при постоянном давлении. Поэтому в продуктовых ректификационных колоннах обычно предусматривают специальные системы стабилизации давления (рис. 2.11).

Уравнение материального баланса аппарата по газовой фазе записывается и виде:

где V - объем аппарата; G вх и G Вых - расход газа соответственно пода­ваемого в аппарат и отводимого из него; С0б - масса газа, образующегося (или расходуемого) в аппарате в единицу времени.

Как видно из сравнения уравнений (2.1) и (2.2), способы ре­ гулирования давления аналогичны способам регулирования уровня. В рассмотренных выше примерах АСР давления регу­лирующими воздействиями выбраны расход несконденсировав­ шихся газов, отводимых из верхней части колонны (т. е. G ВЫх , рис. 2.11) и расход охлаждающей воды в барометрический кон­ денсатор, который влияет на скорость конденсации вторичного пара (т. е. на G , рис. 2.10).

Особое место среди АСР давления занимают системы регу­ лирования перепада давления в аппарате, характеризующего гидродинамический режим, который существенно влияет на про­ текание процесса. Примерами таких аппаратов могут служить насадочные колонны (рис. 2.12, а), аппараты с кипящим слоем (рис. 2.12,6) и др.

Регулирование температуры. Температура является показателем термодинамического состояния системы и используется как вы-


Рис. 2.10. Регулирование разрежения в многокорпусной выпарной уста­ новке:

/, 2 - выпарные аппараты; 3 - барометрический конденсатор; 4 - регулятор разрежения; 5 - регулирующий клапан

Рис. 2.11. АСР давления в ректификационной колонне:

1 - колонна; 2 - дефлегматор; 3 - флегмовая емкость; 4 - регулятор давления; 5 - ре­гулирующий клапан

Рис. 2.12. Схема регулирования перепада давления:

а - в колонном аппарате с насадкой; б -в аппарате с кипящим слоем; 1 - аппарат; 2 - регулятор перепада дав­ления; 3 - регулирующий клапан

ходная координата при регу­лировании тепловых процес­сов. Динамические характе­ристики объектов в системах регулирования температуры

зависят от физико-химических параметров процесса и конструк­ции аппарата. Поэтому общие рекомендации по выбору АСР температуры сформулировать невозможно, и требуется анализ каждого конкретного процесса.

К общим особенностям АСР температуры можно отнести значительную инерционность тепловых процессов и промышлен­ных датчиков температуры. Поэтому одна из основных задач при проектировании АСР температуры - уменьшение инерцион­ности датчиков.

Рассмотрим, например, динамические характеристики тер­
мометра в защитном чехле (рис. 2.13, а). Структурную схему тер­
мометра можно представить как последовательное соединение
четырех тепловых емкостей (рис. 2.13,6): защитного чехла /,
воздушной прослойки 2, стенки термометра 3 и собственно ра­
бочей жидкости 4. Если пренебречь тепловым сопротивлением
каждого слоя, то все элементы можно аппроксимировать апе­
риодическими звеньями 1-го порядка, уравнения которых име­
ют вид:

mi - масса соответственно чехла, воздушной прослойки, стенки и жидкости; Cpi - удельные теплоемкости; a j1, a j2 - коэффициенты теплоотдачи; F f1, F f 2 - поверхности теплоотдачи.

Как видно из уравнений (2.3), основными направлениями уменьшения инерционности датчиков температуры являются:

повышение коэффициентов теплоотдачи от среды к чехлу в результате правильного выбора места установки датчика; при этом скорость движения среды должна быть максимальной; при прочих равных условиях более предпочтительна установка тер­ мометров в жидкой фазе (по сравнению с газообразной), в кон­ денсирующемся паре (по сравнению с конденсатом) и т. п.;

уменьшение теплового сопротивления и тепловой емкости защитного чехла в результате выбора его материала и тол­ щины;

уменьшение постоянной времени воздушной прослойки за счет применения наполнителей (жидкость, металлическая стружка); у термоэлектрических преобразователей (термопар) рабочий спай припаивается к защитному чехлу;

выбор типа первичного преобразователя; например, при вы­боре термометра сопротивления, термопары или манометриче­ ского термометра необходимо учитывать, что наименьшей инер­ционностью обладает термопара в малоинерционном исполнении, наибольшей - манометрический термометр. Регулирование рН. Системы регулирования рН можно подраз­ делить на два типа, в зависимости от требуемой точности регу­ лирования. Если скорость изменения рН невелика, а допусти­ мые пределы ее колебаний достаточно широки, применяют по­ зиционные системы регулирования, поддерживающие рН в за­ данных пределах: рНи <рН<рНв. Ко второму типу относятся системы, обеспечивающие регулирование процессов, в которых требуется точное поддержание pH на заданном значении (на­ пример, в процессах нейтрализации). Для их регулирования ис­ пользуют непрерывные ПИ - или ПИД-регуляторы.

Общей особенностью объектов при регулировании рН явля­ ется нелинейность их статических характеристик, связанная с нелинейной зависимостью рН от расходов реагентов . На рис. 2.14 показана кривая титрования, характеризующая за-



Рис. 2.14. Зависимость величины рН от расхода реагента

висимость р H от расхода кисло­ ты g 1 . Для различных заданных значений рН на этой кривой можно выделить три характерных участка: первый (средний), относящийся к

почти нейтральным средам, близок к линейному и характеризу­ ется очень большим коэффициентом усиления; второй и третий участки, относящиеся к сильно щелочным или кислым средам, обладают наибольшей кривизной.

На первом участке объект по своей статической характери­стике приближается к релейному элементу. Практически это означает, что при расчете линейной АСР коэффициент усиления регулятора настолько мал, что выходит за пределы рабочих настроек промышленных регуляторов. Так как собственно реак­ция нейтрализации проходит практически мгновенно, динамиче­ские характеристики аппаратов определяются процессом сме­шения и в аппаратах с перемешивающими устройствами доста­точно точно описываются дифференциальными уравнениями 1-го порядка с запаздыванием. При этом чем меньше постоян­ная времени аппарата, тем сложнее обеспечить устойчивое регу­лирование процесса, так как начинают сказываться инерцион­ность приборов и регулятора и запаздывание в импульсных ли­ниях.

Для обеспечения устойчивого регулирования рН применяют специальные системы. На рис. 2.15, а показан пример системы регулирования рН с двумя регулирующими клапанами. Кла­ пан 1, обладающий большим условным диаметром, служит для грубого регулирования расхода и настроен на максимальный диапазон изменения выходного сигнала регулятора рн, хрв] (рис. 2.15,6, кривая 1). Клапан 2, служащий для точного регу­лирования, рассчитан на меньшую пропускную способность и настроен таким образом, что при xp = xp °+ A он полностью от­ крыт, а при Хр=хр° -А - полностью закрыт (кривая 2). Таким


Рис. 2.15. Пример системы регулирования рН:

а - функциональная схема; б - статические характеристики клапанов; /, 2 -регули­рующий клапан; 3 - регулятор рН

Рис. 2.16. Кусочно-линейная аппроксимация статической характеристики объ­екта при регулировании рН

Рис. 2.17. Структурная схема системы регулирования рН с двумя регуля­торами

образом, при незначительном отклонении рН от рН°, когда хр° -A 2. Если \хр -xр0|>|Д, клапан 2 остается в крайнем положении, и регули­рование осуществляется клапаном /.

На втором и третьем участках статической характеристики (рис. 2.14) ее линейная аппроксимация справедлива лишь в очень узком диапазоне изменения рН, и в реальных условиях ошибка регулирования за счет линеаризации может оказаться недопустимо большой. В этом случае более точные результаты дает кусочно-линейная аппроксимация (рис. 2.16), при которой " линеаризованный объект имеет переменный коэффициент уси­ления:

На рис. 2.17 приведена структурная схема такой АСР. В зави­симости от рассогласования А рН, включается в работу один из регуляторов, настроенный на соответствующий коэффициент усиления объекта.

Несмотря не огромное разнообразие технологических процессов химической промышленности, все они состоят из отдельных технологических операций, каждую из которых можно, как сказано выше, отнести к одной из следующих групп типовых процессов: механические, гидродинамические, тепловые, массообменные, химические (реакторные), термодинамические. В основе процессов каждой группы лежат общие физико-химические закономерности, что предопределяет значительное сходство их свойств как объектов автоматизаци.

Благодаря этому оказывается возможной разработка типовых схем автоматизации для объектов каждой группы. Однако, одного технологического признака недостаточно для типизации объектов автоматизации, т.к. процессы одной группы могут иметь различное аппаратурное оформление (например, сушка в барабанной сушилке или в сушилке с кипящим слоем) и, как объекты автоматизации, существенно различаться по своим свойствам. Следовательно, только сочетание двух признаков - типа технологического процесса и типа аппарата, в котором этот процесс осуществляется, полностью определяет типовой объект автоматического регулирования в химическом производстве.

Для каждого типового объекта можно разработать один или несколько вариантов систем автоматизации.

АСР расхода . Чаще всего возникает задача регулирования расхода газа, жидкости или пара, транспортируемого по трубопроводу. Регулирование расхода в такой системе производится путем дросселирования потока, которое зависит от степени открытия регулирующего клапана (см. рисунок 7.2):

Рисунок 7.2 - Простейшая АСР расхода

Объектом регулирования фактически является участок трубопровода между датчиком расхода и регулирующим клапаном, который можно считать безынерционным усилительным звеном. Следовательно, динамическая характеристика заданной части АСР определяется только динамическими свойствами датчика расхода и регулирующего органа. Для поддержания заданной величины расхода без остаточного отклонения в АСР расхода обычно применяются ПИ-регуляторы.

В системах регулирования расхода применяют один из трех способов изменения расхода:

- дросселирование потока вещества через регулирующий орган, устанавливаемый на трубопроводе (клапан, шибер, заслонка);

Изменение напора в трубопроводе с помощью регулируемого источника энергии (например, изменением числа оборотов двигателя насоса или угла поворота лопастей вентилятора);

- байпасирование , т е. перерос избытка вещества из основного трубопровода в обводную линию.

Регулирование расхода после центробежного насоса осуществляется регулирующим клапаном, устанавливаемым на нагнетательном трубопроводе (рисунок 7.3, а). При использовании поршневого насоса, применение подобной АСР недопустимо, так как при работе регулятора клапан может закрыться полностью, что приведет к разрыву трубопровода (или к помпажу, если клапан установлен на всасе насоса). В этом случае для регулирования расхода используют байпасирование потока (Рисунок 7.3, б).


1 - измеритель расхода; 2 - регулирующий клапан; 3 - регулятор; 4 - насос.

Рисунок 7.3 - Схемы регулирования расхода после центробежного (а) и поршневого (б) насосов.

Регулирование расхода методом дросселирования потока в байпасном трубопроводе. При использовании поршневых насосов регулирующие органы нельзя устанавливать на напорном трубопроводе, т.к. изменение степени открытия такого органа приводит лишь к изменению давления в нагнетательной линии, расход же остается постоянным. Полное закрытие регулирующего органа может привести к поломке насоса. В таком случае регулирующий орган устанавливается на байпасной линии, соединяющей всасывающий и нагнетательный трубопроводы (рисунок 7.3, 6).

Недостатком данного способа регулирования является низкая экономичность. Более экономичным является метод регулирования изменением показателей работы насоса: числа оборотов вала, хода поршня, угла наклона лопастей.

Число оборотов вала можно изменить:

1. Переключением обмотки статора на различное число пар полюсов,

2. Введением реостата в цепь ротора двигателя,

3. Изменением частоты питающего тока,

4. Применяя регулируемые муфты скольжения между насосом и асинхронным двигателем.

Регулирование расхода сыпучих веществ осуществляется изменением степени открытия регулирующей заслонки на выходе из бункера (рис 7.4, а), либо изменением скорости движения ленты транспортера. Измерителем расхода при таком варианте служит взвешивающее устройство, которое определяет массу материала на ленте транспортера (рис 7.4, б).

1 - бункер. 2 - транспортер; 3 - регулятор; 4 - регулирующая заслонка; 5 - электродвигатель

Рисунок 7.4. Схемы регулирования расходов сыпучих веществ:

Регулирование соотношения расходов двух веществ можно осуществлять тремя спосо-бами:

При незаданной общей производительности расход одного вещества (рисунок 7.5, а) G1, называемый «ведущим», может меняться произвольно; второе вещество подается при постоянном соотношении γ с первым, так что «ведомый» расход равен JG1. Иногда вместо регулятора соотношения используют реле соотношения и обычный регулятор для одной переменной (рисунок 7.5, б). Выходной сигнал реле 6, устанавливающего задан-ный коэффициент соотношения γ, подается в виде задания регулятору 5, обеспечиваю-щему поддержание «ведомого» расхода.

При заданном «ведущем» расходе кроме АСР соотношения применяют и АСР «веду-щего» расхода (рисунок 7.5, в). При такой схеме в случае изменения задания по расходу G1 автоматически изменится и расход G2 (в заданном соотношении с G1).

При заданной общей нагрузке и коррекции коэффициента по третьему параметру. АСР соотношения расходов является внутренним контуром в каскадной системе регулиро-вания третьего технологического параметра (например, температуры в аппарате). При этом заданный коэффициент соотношения устанавливается внешним регулятором в за-висимости от этого параметра, так что G2 = JfyJG1 (рисунок 7.5, г). Особенность настройки каскадных АСР состоит в том, что на задание внутреннему регулятору устанавливают ограничение хрн < хр < хрв. Для АСР соотношения расходов это соответствует ограниче-нию ун < γ < ув. Если выходной сигнал внешнего регулятора выходит за пределы [хрн,хрв], то задание регулятору соотношения остается на предельно допустимом значе-нии γ (т. е. Ji1 или J6).

1, 2 - измерители расхода, 3 - регулятор соотношения, 4, 7 - регулирующие клапаны; 5 - регулятор расхода, 6 - реле соотношения, 8 - регулятор температуры, 9 - устройство ограничения.

Рисунок 7.5. Схемы регулирования соотношения расходов.

Смешение жидкостей. При разработке типового решения под объектом управления будем понимать емкость с механической мешалкой, в которой смешиваются две жидкости. Цель управления - получение жидкости (смеси) с определенной концентрацией какого-либо компонента. Расходы жидкостей А и Б и их концентрации могут изменяться при нарушении технологического режима предыдущих процессов. Расход смеси определяется последующим технологическим процессом.

Требуется при проведении процесса смешения:

1. Поддерживать материальный баланс смесителя,т.е. F А + F Б = F смеси.

2. Поддерживать постоянной концентрацию смеси, т.е Q смеси = const.

Для поддержания материального баланса следует в качестве регулируемой величины выбрать уровень смеси в баке. Постоянство уровня достигается изменением расхода F Б. Постоянство концентрации Q смеси может быть при этом обеспечено изменением расхода F А (рисунок 7.6)

Рисунок 7.6 - Пример АСР уровня

Если расход жидкости Б сильно изменяется при регулировании уровня, для улучшения качества регулирования концентрации следует использовать регулятор соотношения расходов жидкостей с коррекцией по концентрации. Этот регулятор способствует уменьшению возмущений по концентрации, поступающих при первоначальном изменении расхода жидкости. При поступлении других возмущающих воздействий, например, с изменением концентрации компонентов в жидкостях, изменится задание соотношения расходов (рисунок 7.7).

Рисунок 7.7 - Пример АСР соотношения уровней

Регулирование процесса перемешивания в трубопроводе. Если процесс перемешивания производится непосредственно в трубопроводе, то отпадает необходимость в узле стабилизации уровня, достаточно установить регулятор концентрации компонента в смеси или регулятор соотношения расходов (с коррекцией или без коррекции, рисунок 7.8).

Рисунок 7.8 - Регулирование процесса перемешивания в трубопроводе

АСР уровня . Уровень является косвенным показателем гидродинамического равновесия в аппарате. Постоянство уровня свидетельствует о соблюдении материального баланса, когда приток жидкости равен стоку, и скорость изменения уровня равна нулю.

В общем случае изменение уровня описывается уравнением вида:

где S - площадь горизонтального (свободного) сечения аппарата; G ex , G eыx - расходы жидкости на входе в аппарат и выходе из него; G o6 - количество жидкости, образующейся (или расходуемой) в аппарате в единицу времени. В зависимости от требуемой точности поддержания уровня применяют один из следующих двух способов регулирования:

В зависимости от требуемой точности поддержания уровня применяют один из следующих двух способов регулирования:

Позиционное регулирование, при котором уровень в аппарате поддерживается в заданных, достаточно широких пределах: Lfs < L < L^ Такие системы регулирования устанавливают на сборниках жидкости или промежуточных емкостях (рисунок 7.9). При достижении предельного значения уровня происходит автоматическое переключение потока на запасную емкость;

Непрерывное регулирование, при котором обеспечивается стабилизация уровня на заданном значении, т. е. L = L .

1 - насос; 2 - аппарат; 3 - сигнализатор уровня; 4 - регулятор уровня; 5,6 - регулирующие клапаны.

Рисунок 7.9 - Схема позиционного регулирования уровня

Особенно высокие требования предъявляются к точности регулирования уровня в теплообменных аппаратах, в которых уровень жидкости существенно влияет на тепловые процессы. Например, в паровых теплообменниках уровень конденсата определяет фактическую поверхность теплообмена. В таких АСР для регулирования уровня без статической погрешности применяют ПИ-регуляторы . П-регуляторы используют лишь в тех случаях, когда не требуется высокое качество регулирования и возмущения в системе не имеют постоянной составляющей, которая может привести к накоплению статической погрешности.

При отсутствии фазовых превращений в аппарате уровень в нем регулируют одним из трех способов:

Изменением расхода жидкости на входе в аппарат (регулирование «на притоке», рисунок 7.10, а);

Изменением расхода жидкости на выходе из аппарата (регулирование «на стоке», рисунок 7.10, б);

Регулированием соотношения расходов жидкости на входе в аппарат и выходе из него с коррекцией по уровню (каскадная АСР, Рисунок 7.10, в); отключение корректирующего контура может привести к накоплению ошибки при регулировании уровня, так как вследствие неизбежных погрешностей в настройке регулятора соотношения расходы жидкости на входе и выходе аппарата не будут точно равны друг другу, и вследствие интегрирующих свойств объекта, уровень в аппарате будет непрерывно нарастать (или убывать).

а - регулирование «на притоке»; б - регулирование «на стоке», в - каскадная АСР (1 - регулятор уровня, 2 - регули-рующий клапан, 3, 4 - измерители расхода, 5 - регулятор соотношения).

Рисунок 7.10 - Схемы непрерывного регулирования уровня:

1 - испаритель; 2 - регулятор уров-ня, 3 - регулирующий клапан

Рисунок 7.11 - Схема регулирова-ния уровня в испарителе

В случае, когда гидродинамические процессы в аппарате сопровождаются фазовыми превращениями, можно регулировать уровень изменением подачи теплоносителя (или хладагента). В таких аппаратах уровень взаимосвязан с другими параметрами (например, давлением), поэтому выбор способа регулирования уровня в каждом конкретном случае должен выполняться с учетом остальных контуров регулирования. Особое место в системах регулирования уровня занимают АСР уровня в аппаратах с кипящим (псевдосжиженным) слоем зернистого материала (рисунок 7.12).

Устойчивое поддержание уровня кипящего слоя возможно в достаточно узких пределах соотношения расхода газа и массы слоя. При значительных колебаниях расхода газа (или расхода зернистого материала) наступает режим уноса слоя или его оседания. Поэтому к точности регулирования уровня кипящего слоя предъявляют особо высокие требования. В качестве регулирующих воздействий используют расход зернистого материала на входе или выходе аппарата (рисунок 7.12, а) или расход газа на ожижение слоя (рисунок 7.12, б).

а - отводом зернистого материала, 6 - изменением расхода газа (1 - аппарат с кипящим слоем, 2 - регулятор уровня, 3 - регулирующий орган).

Рисунок 7.12 - Регулирование уровня кипящего слоя:

АСР давления. Давление является показателем соотношения расходов газовой фазы на входе в аппарат и выходе из него. Постоянство давления свидетельствует о соблюдении материального балан-са по газовой фазе. Обычно давление (или разрежение) в технологической установке стабили-зируют в каком-либо одном аппарате, а по всей системе оно устанавливается в соответствии с гидравлическим сопротивлением линии и аппаратов. Например, в многокорпусной выпарной установке (см. рисунок 7.13, а) стабилизируют разрежение в последнем выпарном аппарате. В ос-тальных аппаратах при отсутствии возмущений устанавливается разрежение, которое опреде-ляется из условий материального и теплового балансов с учетом гидравлического сопротив-ления технологической линии.

В тех случаях, когда давление существенно влияет на кинетику процесса (например, в процессе ректификации), предусматривается система стабилизации давления в отдельных ап-паратах (рисунок 7.13, б). Кроме того, при регулировании процесса бинарной ректификации часто в качестве косвенного показателя состава смеси используют ее температуру кипения, которая однозначно связана с составом лишь при постоянном давлении. Поэтому в продуктовых рек-тификационных колоннах обычно предусматривают специальные системы стабилизации дав-ления.

1 ,2 - выпарные аппараты; 3 - барометрический конденсатор; 4 - регулятор разрежения;

5 - регулирующий клапан.

Рисунок 7.13а - Регулирование разряжения в многокорпусной выпарной установке

1 - колонна; 2 - дефлегматор; 3 - флегмовая ёмкость; 4 - регулятор давления;

5 - регулирующий клапан

Рисунок 7.13Б - АСР давления в ректификационной колонне

Регулирование разряже-ния в многокорпусной выпарной установке. В данной систе-ме регулирующим воздействием является расход охлаждающей воды в барометрический конден-сатор, который влияет на ско-рость конденсации вторичного пара.

Регулирования перепада давления. В таких аппаратах ре-гулируется перепад давления, характеризующий гидродинамический режим, который влияет на протекание процесса (рисунок 7.14).

а - в колонном аппарате с насадкой; б - в аппарате с кипящем слоем (1 - аппарат; 2 - регулятор перепада давления; 3 - регулирующий клапан).

Рисунок 7.14 - Схема регулирования перепада давления

В целом АСР давления жидкости, газа или пара, транспортируемого по трубопроводу имеет много общего с АСР расхода, т.к. объекты регулирования обладают одинаковыми свойствами. Иногда для регулирования давления в трубопроводах пара или сжатого воздуха применяют П-регуляторы прямого действия.

При отсутствии резких и значительных по амплитуде возмущений они обеспечивают хорошее качество регулирования благодаря минимальной инерционности контура регулирования.

АСР Регулирование температуры. Температура является показателем термодинамического состояния системы и исполь-зуется как выходная координата при регулировании тепловых процессов. Динамические ха-рактеристики объектов в системах регулирования температуры зависят от физико-химических параметров процесса и конструкции аппарата. Поэтому общие рекомендации по выбору АСР температуры сформулировать невозможно, и требуется анализ каждого конкретного процесса.

К общим особенностям АСР температуры можно отнести значительную инерционность тепловых процессов и промышленных датчиков температуры. Поэтому одна из основных за-дач при проектировании АСР температуры - уменьшение инерционности датчиков.

Рассмотрим, например, динамические характеристики термометра в защитном чехле (рисунок 7.15).

1 - защитный чехол; 2 - воздушная прослойка; 3 - стенка термометра; 4 - рабочая жидкость.

Рисунок 7.15. Принципиальная (а) и структурная (б) схемы термометра

Структурную схему термометра можно представить как последовательное соединение четы-рех тепловых емкостей (рисунок 7.15, б): защитного чехла 1, воздушной прослойки 2, стенки тер-мометра 3 и собственно рабочей жидкости 4. Если пренебречь тепловым сопротивлением ка-ждого слоя, то все элементы можно аппроксимировать апериодическими звеньями 1-го поряд-ка, уравнения которых имеют вид:

M j - масса соответственно чехла, воздушной прослойки, стенки и жидкости; c pj - удельные теплоемкости; α j1 , α j2 - коэффициенты теплоотдачи; Fj1, Fj2 - поверхности теплоотдачи.

Как видно из последнего уравнений, основными направлениями уменьшения инерционности датчиков температуры являются:

Повышение коэффициентов теплоотдачи от среды к чехлу в результате правильного выбора места установки датчика; при этом скорость движения среды должна быть максимальной; при прочих равных условиях более предпочтительна установка термометров в жидкой фазе (по сравнению с газообразной), в конденсирующемся паре (по сравнению с конденсатом) и т. п.;

Уменьшение теплового сопротивления и тепловой емкости защитного чехла в результате выбора его материала и толщины;

Уменьшение постоянной времени воздушной прослойки за счет применения наполнителей (жидкость, металлическая стружка); у термоэлектрических преобразователей (термопар) рабочий спай припаивается к защитному чехлу;

Выбор типа первичного преобразователя; например, при выборе термометра сопротивления, термопары или манометрического термометра необходимо учитывать, что наименьшей инерционностью обладает термопара в малоинерционном исполнении, наибольшей - манометрический термометр.

АСР числа рН . Системы регулирования рН можно подразделить на два типа, в зависимости от требуемой точности регулирования. Если скорость изменения рН невелика, а допустимые пределы ее колебаний достаточно широки, применяют позиционные системы регулирования, поддерживающие рН в заданных пределах: рНн ≤ рН ≤ рНв. Ко второму типу относятся системы, обеспечивающие регулирование процессов, в которых требуется точное поддержание pH на заданном значении (например, в процессах нейтрализации). Для их регулирования используют непрерывные ПИ- или ПИД-регуляторы.

Общей особенностью объектов при регулировании рН является нелинейность их статических характеристик, связанная с нелинейной зависимостью рН от расходов реагентов. на рисунке 7.16 показана кривая титрования, характеризующая зависимость рН от расхода кислоты G 1 . Для различных заданных значений рН на этой кривой можно выделить три характерных участка: первый (средний), относящийся к почти нейтральным средам, близок к линейному и характеризуется очень большим коэффициентом усиления; второй и третий участки, относящиеся к сильно щелочным или кислым средам, обладают наибольшей кривизной.

На первом участке объект по своей статической характеристике приближается к релейному элементу. Практически это означает, что при расчете линейной АСР коэффициент усиления регулятора настолько мал, что выходит за пределы рабочих настроек промышленных регуляторов. Так как собственно реакция нейтрализации проходит практически мгновенно, динамические характеристики аппаратов определяются процессом смешения и в аппаратах с перемешивающими устройствами достаточно точно описываются дифференциальными уравнениями 1-го порядка с запаздыванием. При этом, чем меньше постоянная времени аппарата, тем сложнее обеспечить устойчивое регулирование процесса, так как начинают сказываться инерционность приборов и регулятора и запаздывание в импульсных линиях.

Рисунок 7.16 - Зависимость величины рН от расхода реагента

Для обеспечения устойчивого регулирования рН применяют специальные системы. на рисунке 7.17, а показан пример системы регулирования рН с двумя регулирующими клапанами.

а - функциональная схема; б - статические характеристики клапанов (1, 2 - регулирующий клапан3 - регулятор рН).

Рисунок 7.17 - Пример системы регулирования рН

Клапан 1, обладающий большим условным диаметром, служит для грубого регулирования расхода и настроен на максимальный диапазон изменения выходного сигнала регулятора [х рн,х рв ] (Рисунок 7.17, б, кривая 1). Клапан 2, служащий для точного регулирования, рассчитан на меньшую пропускную способность и настроен таким образом, что при х р = х 0 р + Δ он полностью открыт, а при х р = х 0 р - Δ - полностью закрыт (кривая 2). Таким образом, при незначительном отклонении рН от рН 0 , когда х 0 р - Δ < х р < х 0 р + Δ, степень открытия клапана 1 практически не изменяется, и регулирование ведется клапаном 2. Если |х р - х 0 р |, клапан 2 остается в крайнем положении, и регулирование осуществляется клапаном 1.

На втором и третьем участках статической характеристики (Рисунок 3.12, б) ее линейная аппроксимация справедлива лишь в очень узком диапазоне изменения рН, и в реальных условиях ошибка регулирования за счет линеаризации может оказаться недопустимо большой. В этом случае более точные результаты дает кусочно-линейная аппроксимация (рисунок 7.18), при которой линеаризованный объект имеет переменный коэффициент усиления.

Рисунок 7.18 - Кусочно-линейная аппроксимация статической характеристики объекта при регулировании рН

На рисунке 7.19 приведена структурная схема такой АСР. В зависимости от рассогласования рН, включается в работу один из регуляторов, настроенный на соответствующий коэффициент усиления объекта.

Рисунок 7.19 - Структурная схема системы регулирования рН с двумя регуляторами.

АСР параметров состава и качества. В процессах химической технологии большую роль играет точное поддержание качественных параметров продуктов (концентрация определенного вещества в потоке и т.п.). Эти параметры сложно измерить. В некоторых случаях для измерения состава используют хроматографы, которые выдают результаты измерения в дискретные моменты времени (по продолжительности цикла работы хроматографа).

Дискретность измерения может привести к значительным дополнительным запаздываниям и снижению динамической точности регулирования. Чтобы уменьшить нежелательное влияние задержки измерения, используют модель связи качества продукта с переменными, которые измеряют непрерывно. Эта модель может быть достаточно простой; коэффициенты модели уточняют, сравнивая рассчитанное по ней и найденное в результате очередного анализа значение качественного параметра.

Таким образом, одним из рациональных способов регулирования качества является регулирование по косвенному вычисляемому показателю с уточнением алгоритма его расчета поданным прямых анализов. В промежутках между измерениями показатель качества продукта может быть рассчитан экстраполяцией ранее измеренных значений. Блок-схема системы регулирования параметра качества продукта показана на рисунке 7.20. Вычислительное устройство в общем случае непрерывно рассчитывает оценку показателя качества ~ (t) по формуле:

в которой первое слагаемое отражает зависимость от непрерывно измеряемых переменных процесса или величин, динамически с ними связанных, например производных, а второе - от выхода экстраполирующего фильтра.

Для повышения точности регулирования состава и качества применяют приборы с устройством автоматической калибровки. В этом случае система управления производит периодическую калибровку анализаторов состава, корректируя их характеристики.

1 - объект; 2 -анализатор качества; 3 - вычислительное устройство; 4 - регулятор

Рисунок 7.20 -. Блок-схема АСР параметра качества продукта:

В качестве примера рассмотрим процесс принятия решений при автоматизации одного из распространенных типовых процессов.

Автоматизация процесса перемешивания. Общая характеристика процессов перемешивания в жидких средах. Перемешивание - гидромеханический процесс взаимного перемещения частиц в жидкой среде с целью их равномерного распределения во всем объеме под действием импульса, передаваемого среде мешалкой, струей жидкости или газа.

Основные понятия и определения..................................................................................................... 4

1. Структурные схемы объекта регулирования.......................................................................... 13

2. Последовательность выбора системы автоматизации........................................................... 15

3. Регулирование основных технологических параметров....................................................... 17

3.1. Регулирование расхода, соотношения расходов............................................................ 17

3.2. Регулирование уровня....................................................................................................... 19

3.3. Регулирование давления................................................................................................... 21

3.4. Регулирование температуры............................................................................................. 22

3.5. Регулирование рН.............................................................................................................. 24

3.6. Регулирование параметров состава и качества.............................................................. 26

Автоматизация основных процессов химической технологии.................................................... 27

4. Автоматизация гидромеханических процессов..................................................................... 27

4.1. Автоматизация процессов перемещения жидкостей и газов........................................ 27

4.2. Автоматизация разделения и очистки неоднородных систем...................................... 31

5. Автоматизация тепловых процессов....................................................................................... 32

5.1. Регулирование теплообменников смешения.................................................................. 33

5.2. Регулирование поверхностных теплообменников........................................................ 38

5.3. Автоматизация трубчатых печей..................................................................................... 42

6. Автоматизация массообменных процессов............................................................................ 45

6.1. Автоматизация процесса ректификации......................................................................... 46

6.2. Автоматизация процесса абсорбции................................................................................ 53

6.3. Автоматизация процесса абсорбции - десорбции.......................................................... 57

6.4. Автоматизация процесса выпаривания........................................................................... 59

6.5. Автоматизация процесса экстракции.............................................................................. 64

6.6. Автоматизация процесса сушки....................................................................................... 66

6.6.1. Процесс сушки в барабанной сушилке.................................................................... 66

6.6.2. Автоматизация сушилок с кипящим слоем............................................................. 69

7. Автоматизация реакторных процессов................................................................................... 71

Регулирование технологических реакторов............................................................................... 71

Контрольные вопросы по дисциплине для подготовки к экзамену............................................ 74

Литература.......................................................................................................................................... 76


Основные понятия и определения

Автоматизация - это техническая дисциплина, которая занимается изучением, разра- боткой и созданием автоматических устройств и механизмов (т.е. работает без непосредствен- ного вмешательства человека).

Автоматизация - это этап машинного производства, характеризующийся передачей функции управления от человека к автоматическим устройствам (техническая энциклопедия).

ТОУ - технологический объект управления - совокупность технологического оборудо- вания и реализуемого на нем технологического процесса.

АСУ - автоматизированная система управления это человеко-машинная система, обес- печивающая автоматизированный сбор и обработку информации, необходимую для опти- мального управления в различных сферах человеческой деятельности.

Развитие химической технологии и других отраслей промышленности, где преоблада- ют непрерывные технологические процессы (нефтехимическая, нефтеперерабатывающая, ме- таллургическая и др.) потребовало создания более совершенных систем управления, чем ло- кальные АСР. Эти принципиально новые системы получили название автоматизированных систем управления технологическими процессами - АСУ ТП.

Создание АСУ ТП стало возможным благодаря созданию ЭВМ второго и третьего по- колений, увеличению их вычислительных ресурсов и надёжности.

АСУ ТП - называют АСУ для выработки и реализации управляющих воздействий на ТОУ в соответствии с принятым критерием управления - показателем, характеризующим ка- чество работы ТОУ и принимающим определенные значения в зависимости от используемых управляющих воздействий.

АТК - совокупность совместно функционирующих ТОУ и АСУ ТП образует автомати- зированный технологический комплекс.

АСУ ТП отличается от локальных САР:

Более совершенной организацией потоков информации;

Практически полной автоматизацией процессов получения, обработки и представления информации;

Возможностью активного диалога оперативного персонала с УВМ в процессе управле- ния для выработки наиболее эффективных решений;

Более высокой степенью автоматизации функций управления, включая пуск и останов- ку производства.

От систем управления автоматическими производствами типа цехов и заводов- автоматов (высшая ступень автоматизации) АСУ ТП отличается значительной степенью уча- стия человека в процессах управления.


Переход от АСУ ТП к полно- стью автоматическим производствам сдерживается:

Несовершенством технологи- ческих процессов (наличие не- механизированных технологи- ческих операций;

Низкой надёжностью техноло- гического оборудования; не- достаточной надёжностью средств автоматизации и вы- числительной техники;

Трудностями математического описания задач, решаемых че- ловеком в АСУ ТП и т.д.) Глобальная цель управления

ТОУ с помощью АСУ ТП состоит в поддержании экстремального значе- ния критерия управления при выпол- нении всех условий, определяющих


Рис. 1. Типовая функциональная структура АСУ ТП.

1 – первичная обработка информации (И); 2 – обнаружение от- клонений технологических параметров и показателей состояния оборудования от установленных значений (И); 3 – расчет не измеряемых величин и показателей (И); 4 – подготовка инфор- мации и выполнение процедур обмена со смежными и другими АСУ (И); 5 – оперативное и (или) по вызову отображение и ре- гистрация информации; 6 – определение рационального режима технологического процесса (У); 7 – формирование управляю- щих воздействий, реализующих выбранный режим.


множество допустимых значений управляющих воздействий.

В большинстве случаев глобальная цель разбивается на ряд частных целей; для дости- жения каждой из них требуется решение более простой задачи управления.

Функцией АСУ ТП называют действия системы, направленные на достижение одной из частных целей управления.

Частные цели управления, как и реализующие их функции, находятся в определенном соподчинении, образуя функциональную структуру АСУ ТП.

Функции АСУ ТП:

1. Информационные - сбор, преобразование и хранение информации о состоянии ТОУ; представление этой информации оперативному персоналу или передача ее для после- дующей обработки.

2. Первичная обработка информации о текущем состоянии ТОУ.

3. Обнаружение отклонений технологических параметров и показателей состояния обо- рудования от установленных значений.

4. Расчет значений не измеряемых величин и показателей (косвенные измерения, расчет ТЭП, прогнозирование);

5. Оперативное отображение и регистрация информации.


6. Обмен информацией с оперативным персоналом.

7. Обмен информацией со смежными и вышестоящими АСУ. Управляющие функции обес-

печивают поддержание экстремаль- ных значения критерия управления в условиях изменяющейся производст- венной ситуации, они делятся на две группы:

первая – определение опти- мальных управляющих воздействий;

вторая – реализация этого ре- жима путем формирования управ- ляющих воздействий на ТОУ (стаби- лизация, программное управление; программно-логическое управление).

Вспомогательные функции


обеспечивают решение внутрисис- темных задач.

Для реализации функций АСУ ТП необходимы:

Техническое обеспечение;

Программное;

Информационное;

Организационное;

Оперативный персонал.


Рис. 2. Техническая структура КТС АСУ ТП для ра- боты в супервизорном режиме.

Техническая структура КТС АСУ ТП в режиме непосредствен- ного цифрового управления:

ИИ – источник информации; УСО – устройство связи с объ- ектом; ВК – вычислительный комплекс; УСОП – устройство связи с оперативным персоналом; ОП – оперативный персо- нал; ТСА – технические средства автоматизации для реали- зации функций локальных систем; ИУ – исполнительные устройства.


Техническое обеспечение АСУ ТП составляет комплекс технических средств (КТС),

Средства получения информации о текущем состоянии ТОУ;

УВК (управляемый вычислительный комплекс);

Технические средства для реализации функций локальных систем автоматизации;

Исполнительные устройства, непосредственно реализующие управляющие воздействия на ТОУ.

В комплекс ТС многих АСУ ТП входят механические средства автоматизации из со- става электрической ветви ГСП.

Специфическим компонентом КТС является УВК, в состав которого входят собственно вычислительный комплекс (ВК), устройства связи ВК с объектом (УСО) и с оперативным пер- соналом.


Первым и до сих пор распространенным типом технических структур АСУ ТП является централизованная. В системах с централизованной структурой вся информация, необходимая для управления АТК, поступает в единый центр - операторский пункт, где установлены прак- тически все технические средства АСУ ТП, за исключением источников информации и ис- полнительных устройств. Такая техническая структура наиболее проста и имеет ряд преиму- ществ.

Недостатками её являются:

Необходимость избыточного числа элементов АСУ ТП для обеспечения высокой на- дежности;

Большие затраты кабеля.

Такие системы целесообразны для сравнительно небольших по мощности и компакт- ных АТК.

В связи с внедрением микро- процессорной техники всё большее распространение получает распреде- лённая техническая структура АСУ ТП, т.е. расчленённая на ряд авто- номных подсистем - локальных тех- нологических станций управления, территориально распределённых по технологическим участкам управле- ния. Каждая локальная подсистема представляет собой однотипно вы-


полненную централизованную струк- туру, ядром которой является управ- ляющая микро-ЭВМ.

Локальные подсистемы через


ОП
Рис. 3. Техническая структура КТС АСУ ТП для ра- боты в режиме непосредственного цифрового управ- ления.

свои микро-ЭВМ объединены в единую систему сетью передачи данных.

К сети подключается необходимое для управления АТК число терминалов для опера- тивного персонала.

Программное обеспечение АСУ ТП связывает все элементы распределённой техниче- ской структуры в единое целое, обладающее рядом достоинств:

Возможностью получения высоких показателей надёжности за счёт расщепления АСУ ТП на семейство сравнительно небольших и менее сложных автономных подсистем и дополнительного резервирования каждой из этих подсистем через сеть;

Применение более надежных средств микроэлектронной вычислительной техники;


Большой гибкостью при композиции и модернизации технического и программного обеспечения и т.д.

Большинство функций АСУ ТП реализуются программно, поэтому важнейшим компо- нентом АСУ ТП является её программное обеспечение (ПО), т.е. совокупность программ, обеспечивающих реализацию функций АСУ ТП.

Программное обеспечение АСУ ТП делится:

Специальное.

Общее ПО поставляется в комплекте со средствами вычислительной техники. Специальное ПО разрабатывается при создании конкретной АСУ ТП и включает про-

граммы, реализующие её информационные и управляющие функции.

Программное обеспечение создается на базе математического обеспечения (МО). МО – совокупность математических методов, моделей и алгоритмов для решения задач и обработки информации с применением вычислительной техники.

Для реализации информационных и управляющих функций АСУ ТП создают специ- альное МО, в состав которого входят:

Алгоритм сбора, обработки и представления информации;

Алгоритмы управления с математическими моделями соответствующих объектов управления;

Алгоритмы локальной автоматизации.

Все взаимодействия как внутри АСУ ТП, так и с внешней средой представляют собой различные формы информационного обмена, необходимы массивы данных и документов, ко- торые обеспечивают при эксплуатации АСУ ТП выполнение всех её функций.

Правила обмена информацией и сама информация, циркулирующая в АСУ ТП, обра- зуют информационное обеспечение АСУ ТП.

Организационное обеспечение АСУ ТП представляет собой совокупность описаний функциональной, технической и организационной структур системы, инструкций и регламен- тов для оперативного персонала, обеспечивающую заданное функционирование АСУ ТП.

Оперативный персонал АСУ ТП состоит из технологов-операторов, осуществляющих управление ТОУ, эксплутационного персонала, обеспечивающего функционирование АСУ ТП (операторы ЭВМ, программисты, персонал по обслуживанию аппаратуры КТС).

Оперативный персонал АСУ ТП может работать в контуре управления или вне него. При работе в контуре управления ОП реализует все функции управления или часть их,


Если оперативный персонал работает вне контура управления, он задаст АСУ ТП ре- жим работы и осуществляет контроль за его соблюдением. В этом случае, зависимости от со- става КТС, АСУ ТП может функционировать в двух режимах:

Комбинированном (супервизорном);

В режиме непосредственного цифрового управления, при котором УВК непосредствен- но воздействует на исполнительные устройства, изменяя управляющие воздействия на ТОУ.

Создание АСУ ТП включает пять стадий:

1. техническое задание (ТЗ);

2. технический проект (ТП);

3. рабочий проект (РП);

4. внедрение АСУ ТП;

5. анализ её функционирования.

На стадии ТЗ основным этапом являются предпроектные научно-исследовательские работы (НИР), обычно выполняемые научно-исследовательской организацией совместно с предприятием-заказчиком. Главная задача предпроектных НИР – изучение технологического процесса как объекта управления. При этом определяют цель и критерии качества функцио- нирования ТОУ, технико-экономические показатели объекта-прототипа, их связи с техноло- гическими показателя-ми; структуру ТОУ, т. е. входные воздействия (в том числе контроли- руемые и неконтролируемые возмущающие воздействия, и управляющие воздействия), вы- ходные координаты и связи между ними; структуру математических моделей статики и дина- мики, значения параметров и их стабильность (степень стационарности ТОУ); статистические характеристики возмущающих воздействий.

Наиболее трудоемкая задача на этапе предпроектных НИР – построение математиче- ских моделей ТОУ, которые в дальнейшем используют при синтезе АСУ ТП. При синтезе ло- кальных АСР обычно используют линеаризованные модели динамики в виде линейных диф- ференциальных уравнений 1 – 2-го порядка с запаздыванием, которые получают обработкой экспериментальных или расчетных переходных функций по разным каналам воздействия. Для решения задач оптимального управления статическими режимами используют конечные со- отношения, полученные из уравнений материального и энергетического баланса ТОУ, или уравнения регрессии. В задачах оптимального управления динамическими режимами исполь- зуют нелинейные дифференциальные уравнения, полученные из уравнений материального и энергетического баланса, записанных в дифференциальной форме.

При выполнении предпроектных НИР применяют методы анализа систем автоматиче- ского управления, изучаемые в дисциплине «Теория автоматического управления», и методы построения математических моделей, которые излагаются в курсе «Моделирование на ЭВМ объектов и систем управления».


Результаты, полученные на этапе предпроектных НИР, используют на этапе эскизной разработки АСУ ТП , в ходе которого выполняются следующие работы:

Выбор критерия и математическая постановка задачи оптимального управления ТОУ, ее декомпозиция (при необходимости) и выбор методов решения глобальной и локаль- ных задач оптимального управления, на основе которых в дальнейшем строят алгоритм оптимального управления;

Разработка функциональной и алгоритмической структуры АСУ ТП;

Определение объема информации о состоянии ТОУ и ресурсов ВК (быстродействие, объем запоминающих устройств), необходимых для реализации всех функций АСУ ТП;

Предварительный выбор КТС, прежде всего УВК;

Предварительный расчет технико-экономической эффективности АСУ ТП. Центральное место среди работ этой стадии занимает математическая постановка зада-

чи оптимального управления ТОУ.

Остальные задачи данного этапа (кроме расчета технико-экономической эффективно- сти) относятся к системотехническому синтезу АСУ ТП, при выполнении которого широко применяют метод аналогий. Накопленный опыт разработки АСУ ТП для ТОУ различной сте- пени сложности позволяет перевести разработку ряда функций и алгоритмов из категории на- учных работ в категорию технических, выполняемых проектным путем. К их числу относятся многие информационные функции (первичная обработка исходной информации, расчет ТЭП, интегрирование и усреднение и др.), а также типовые функции локальных систем автоматиза- ции, реализуемые в АСУ ТП программным способом (сигнализация, противоаварийная бло- кировка, регулирование с использованием типовых законов при НЦУ и др.).

Завершающим этапом эскизной разработки АСУ ТП является предварительный расчет технико-экономической эффективности разрабатываемой системы. Выполняют его специа- листы по экономике, однако исходные данные для них должны подготовить специалисты по автоматизации, поэтому рассмотрим некоторые узловые моменты.

Основным показателем экономической эффективности АСУ ТП служит годовой эко- номический эффект от ее внедрения, который рассчитывают по формуле

Э = (С 2 - S 2) - (C 1 - S 1) - (K 2 - K 1) ,

где С1 и С2 – годовые объемы реализации продукции в оптовых ценах до и после внедрения АСУ ТП, тыс. руб.; S1 и S2 – себестоимость продукции до и после внедрения системы, тыс. руб; K1 и K2 – капитальные затраты на АТК до и после ввода в действие АСУ ТП, тыс. руб; – нормативный отраслевой коэффициент эффективности капитальных вложений в средства автоматизации и вычислительную технику, руб/руб.

Основными источниками экономической эффективности систем автоматизации хими- ко-технологических процессов обычно являются прирост объема реализации продукции и (или) снижение ее себестоимости. Улучшение этих экономических показателей чаще всего достигается за счет уменьшения расхода сырья, материалов и энергии на единицу продукции благодаря более точному поддержанию оптимального технологического режима, повышению


качества продукции (сортности и, соответственно, цены), увеличению производительности оборудования за счет сокращения потерь рабочего времени из-за неплановых остановок про- цесса, вызванных ошибками управления и др. На этапе предпроектных НИР должны быть вы- явлены резервы производства, которые могут быть использованы благодаря применению сис- темы автоматизации.

Например, если при использовании локальной системы автоматизации технологический агрегат простаивает в среднем 20 % планового рабочего времени, из которых 1/4 вызвана ошибками оперативного персонала из-за не- своевременного обнаружения пред аварийных ситуаций, то применение АСУ ТП, реализующей функции прогно- за и анализа производственных ситуаций, может устранить эти потери. Тогда объем выпускаемой продукции в натуральном исчислении возрастет на 5 %, что приведет к увеличению объема реализации и снижению себе- стоимости продукции.

Накопленный опыт автоматизации химических производств показал, что резервы эко- номической эффективности, которые могут быть использованы благодаря автоматизации тех- нологических процессов, обычно составляют от 0,5 до 6 %. При этом, чем лучше отработана технология, тем, как правило, меньше резервы.

Однако не все выявленные (потенциальные) резервы экономической эффективности могут быть использованы после внедрения АСУ ТП. Фактическая эффективность оказывается меньше потенциальной из-за не идеальности АСУ ТП, которая проявляется, в частности, в не- полной адекватности математической модели ТОУ, по которой рассчитывается оптимальный режим, в погрешностях измерения выходных координат объекта, которые также влияют на точность определения оптимального режима, в отказах элементов технического и программ- ного обеспечения, из-за которых снижается качество выполнения отдельных функций и АСУ ТП в целом и т. д. Реальный эффект обычно составляет от 25 до 75 % потенциального, причем, как правило, чем больше потенциальный эффект, тем в меньшей степени он реализуется. Ос- новным показателем технико-экономической эффективности АСУ ТП является срок окупае- мости системы, который определяется по формуле



= K 2 - K 1 .

(C 2 - S 2) - (C 1 - S 1)


Он должен быть не больше нормативного, который для химической промышленности равен 3

Завершающей стадией первого этапа создания АСУ ТП является разработка техниче- ского задания на проектирование системы, которое должно включать полный перечень функ- ций, технико-экономическое обоснование целесообразности разработки АСУ ТП, перечень и объем НИР и план-график создания системы.

При разработке нетиповых АСУ ТП на первый этап приходится примерно 25 % общей трудоемкости, в том числе на предпроектные НИР–15 %. При тиражировании АСУ ТП первая стадия может быть исключена или значительно уменьшена.

Следующим этапом создания нетиповой АСУ ТП является разработка технического проекта , в ходе которой принимаются основные технические решения, реализующие требо-


вания технического задания. Работы на этом этапе выполняют научно-исследовательская и проектная организации.

Основным содержанием НИР является развитие и углубление предпроектных НИР, в частности, уточнение математических моделей и постановок задач оптимального управления, проверка с помощью имитационного моделирования на ЭВМ работоспособности и эффектив- ности алгоритмов, выбранных для реализации важнейших информационных и управляющих функций АСУ ТП. Уточняются функциональная и алгоритмическая структуры системы, про- рабатываются информационные связи между функциями и алгоритмами, разрабатывается ор- ганизационная структура АСУ ТП.

Очень важным и трудоемким этапом на стадии ТП является разработка специального программного обеспечения системы. По имеющимся оценкам, трудоемкость создания специ- ального ПО была близка к общему объему предпроектных НИР и составляла 15 % от общих трудозатрат на создание АСУ ТП.

На стадии ТП окончательно выбирают состав КТС и выполняют расчеты по оценке на- дежности реализации важнейших функций АСУ ТП и системы в целом. Общие затраты труда на проектирование составляют примерно 30 % от затрат на создание АСУ ТП.

На стадии внедрения АСУ ТП производятся монтажные и пуско-наладочные работы, последовательность и содержание которых изучаются в соответствующем курсе. Трудозатра- ты на этой стадии составляют около 30% от общих затрат на систему.

При разработке головных образцов АСУ ТП, подлежащих в дальнейшем тиражирова- нию на однотипных ТОУ, важное значение имеет анализ функционирования системы, в ходе которого проверяют эффективность решений, принятых при ее создании, и определяют фак- тическую технико-экономическую эффективность АСУ ТП.

Любое химическое производство представляет последовательность трёх основных опе-

1. подготовка сырья;

2. собственно химическое превращение;

3. выделение целевых продуктов.

Эта последовательность операций включается в единую сложную химико- технологическую систему (ХТС).

Современное химическое предприятие, завод или комбинат как система большого мас- штаба, состоит из большого количества взаимосвязанных подсистем, между которыми суще- ствуют отношения соподчинённости в виде иерархической структуры с тремя основными сту- пенями.

Каждая подсистема химического предприятия представляет собой совокупность хими- ко-технологической системы и системы автоматического управления, они действуют как еди- ное целое для получения заданного продукта или полупродукта.


Структурные схемы объекта регулирования


(u )⎨


(z )


Один из этапов проектирования систем регулирования технологиче-

⎫ ских процессов – выбор структуры

метров регуляторов. И структура сис-


Рис. 1.1. Структурная схема объекта регулирования.

го процесса как объекта регулирования.


темы, и параметры регуляторов опре- деляются свойствами технологическо-


Любой технологический процесс как объект регулирования (рис. 1.1) характеризуется следующими основными группами переменных:

1. Переменные, характеризующие состояние процесса (совокупность их будем обозначать вектором y ). Эти переменные в процессе регулирования необходимо поддерживать на заданном уровне или изменять по заданному закону. Точность стабилизации перемен- ных состояния может быть различной, в зависимости от требований, диктуемых техно- логией, и возможностей системы регулирования. Как правило, переменные, входящие в вектор y , измеряют непосредственно, но иногда их можно вычислить, используя мо- дель объекта по другим непосредственно измеряемым переменным. Вектор y часто на- зывают вектором регулируемых величин.

2. Переменные, изменением которых система регулирования может воздействовать на объект с целью управления. Совокупность этих переменных обозначают вектором xp (или u ) регулирующих воздействий. Обычно регулирующими воздействиями служат изменения расходов материальных потоков или потоков энергии.

3. Переменные, изменения которых не связаны с воздействием системы регулирования. Эти изменения отражают влияние на регулируемый объект внешних условий, измене- ния характеристик самого объекта и т. п. Их называют возмущающими воздействиями и обозначают вектором или z . Вектор возмущающих воздействий, в свою очередь, можно разбить на две составляющие – первую можно измерить, а вторую – нельзя. Возможность измерения возмущающего воздействия позволяет ввести в систему регу- лирования дополнительный сигнал, что улучшает возможности системы регулирова- ния.

Например, для изотермического химического реактора непрерывного действия, регу- лируемыми переменными являются температура реакционной смеси, состав потока на выходе из аппарата; регулирующими воздействиями могут быть изменение расхода пара в рубашку реактора, изменение расхода катализатора и расхода реакционной смеси; возмущающими воз- действиями являются изменения состава сырья, давления греющего пара, причем если давле-


ние греющего пара нетрудно измерить, то состав сырья во многих случаях может быть изме- рен с низкой точностью или недостаточно оперативно.

Анализ технологического процесса как объекта автоматического регулирования пред- полагает оценку его статических и динамических свойств по каждому из каналов от любого возможного управляющего воздействия к любому возможному регулируемому параметру, а также оценку аналогичных характеристик по каналам связи регулируемых переменных с со- ставляющими вектора возмущений. В ходе такого анализа необходимо выбрать структуру системы регулирования, т. е. решить, с использованием какого регулирующего воздействия следует управлять тем или иным параметром состояния. В результате во многих случаях (от- нюдь не всегда) удается выделить контуры регулирования для каждой из регулируемых вели- чин, т. е. получить совокупность одноконтурных систем регулирования.

Важным элементом синтеза АСР технологического процесса является расчет однокон- турной системы регулирования. При этом требуется выбрать структуру и найти числовые зна- чения параметров регуляторов. Как правило, используют следующие типовые структуры ре- гулирующих устройств (типовые законы регулирования): пропорциональный (П) регулятор (R(p) = -S1); интегральный (И) регулятор (R(p) = -S0/p); пропорционально-интегральный (ПИ) закон регулирования (R(p) = -S1 – S0/p) и, наконец, пропорционально-интегрально- дифференциальный (ПИД) закон (R(p) = -S1 – S0/p – S2·p). При расчете системы проверяют возможность использования наиболее простого закона регулирования, каждый раз оценивая качество регулирования, и если оно не удовлетворяет требованиям, переходят к более слож- ным законам или используют так называемые схемные методы улучшения качества .

В теории автоматического регулирования разработаны различные методы расчета АСР при заданных критериях качества, а также методы оценки качества переходных процессов при заданных параметрах объекта и регулятора. При этом наряду с точными методами, требую- щими больших затрат времени и ручного труда, разработаны приближенные методы, позво- ляющие сравнительно быстро оценить рабочие параметры регулятора или качество переход- ных процессов (метод Циглера–Никольса для расчета настроек регуляторов; приближенные формулы для оценки интегрального квадратичного критерия и т. п.).

Общая задача управления ТП - это минимизация (максимизация) некоторого критерия (себестоимость, затраты энергии и т. д.) при выполнении ограничений на технологические параметры, накладываемых регламентом.

Поскольку решение этой задачи для всего процесса в целом затруднительно (много влияющих факторов), весь ТП следует разбить на отдельные участки, причем обычно участок соответствует законченной технологической операции, имеющей свою подзадачу (приготовление корма, обработка молока и т. д.).

Для отдельного ТП критерий оптимальности установить проще. Это может быть требование стабилизации параметра или несложно вычисляемого критерия. На основании принятого критерия оптимальности для отдельного ТП легко формулируется задача автоматизации. Кроме критерия оптимальности для решения этой задачи необходим анализ объекта автоматизации с точки зрения выявления всех существенных входных и выходных переменных, а также анализ статических и динамических характеристик каналов передачи возмущающих и управляющих воздействий.

Рис. 2.3. Схемы регулирования расхода: а - жидких и газообразных сред; б- сыпучих материалов; в - соотношения сред

Технологические процессы одного типа (например, процессы нагрева) могут отличаться исполнением аппаратуры, физико-химическими свойствами участвующих в них потоков сырья и т.д. Однако все они протекают по одним и тем же законам и подчиняются общим закономерностям. Характер этих закономерностей в первую очередь определяется тем, какой параметр участвует в управлении. Для одного класса процессов, протекающих в типовой технологической системе, может быть разработано типовое решение по автоматизации, являющееся приемлемым для широкого круга систем. Наличие типового решения значительно упрощает задачу построения АСУ.

К числу типовых технологических параметров, подлежащих контролю и регулированию, относят расход, уровень, давление, температуру и ряд показателей качества.

Регулирование расхода. Системы регулирования расхода характеризуются малой инерционностью и частой пульсацией параметра.

Обычно управление расходом - это дросселирование потока вещества с помощью клапана или шибера; изменение напора в трубопроводе за счет изменения частоты вращения привода насоса или степени байпасирования (отведения части потока через дополнительные каналы).

Принципы реализации регуляторов расхода жидких и газообразных сред показаны на рисунке 2.3, а , сыпучих материалов - на рисунке 2.3, б.

В практике автоматизации ТП встречаются случаи, когда требуется стабилизация соотношения расходов двух или более сред.

В схеме, показанной на рисунке 2.3, в, поток G 1 - ведущий, а поток - ведомый, где у - коэффициент соотношения расходов, который устанавливают в процессе статической настройки регулятора.

При изменении ведущего потока G 1 регулятор FF пропорционально изменяет ведомый поток G 2 .

Выбор закона регулирования зависит от требуемого качества стабилизации параметра.

Регулирование уровня. Системы регулирования уровня имеют те же особенности, что и системы регулирования расхода. В общем случае поведение уровня описывается дифференциальным уравнением

(2.1)
,

где S -площадь горизонтального сечения емкости; L - уровень; С вх, G вых - расход среды на входе и выходе; С обр - количество среды, увеличивающейся или уменьшающейся в емкости (может быть равно 0) в единицу времени t .

Постоянство уровня свидетельствует о равенстве количеств подаваемой и расходуемой жидкости. Это условие может быть обеспечено воздействием на подачу (рис. 2.4, а) или расход (рис. 2.4, б) жидкости. В варианте регулятора, показанном на рисунке 2.4, в, используют для стабилизации параметра результаты измерений подачи и расхода жидкости. Импульс по уровню жидкости - корректирующий, он исключает накопление ошибки вследствие неизбежных погрешностей, возникающих при изменении подачи и расхода. Выбор закона регулирования также зависит от требуемого качества стабилизации параметра. При этом возможно использование не только пропорциональных, но также и позиционных регуляторов.

Регулирование давления. Постоянство давления, как и постоянство уровня, свидетельствует о материальном балансе объекта.

(2.2)
В общем случае изменение давления описывается уравнением, аналогичным формуле (2.1),

где V- объем аппарата; р - давление.

Рис. 2.4. Схемы систем регулирования уровня:

а -с воздействием на подачу; б и в - с воздействием на расход среды

Аналогичность уравнений (2.1) и (2.2) свидетельствует о том, что способы регулирования давления аналогичны способам регулирования уровня.

Регулирование температуры. Температура - показатель термодинамического состояния системы. Динамические характеристики системы регулирования температуры зависят от физико-химических параметров процесса и конструкции аппарата. Особенность такой системы - значительная инерционность объекта и нередко измерительного преобразователя.

Принципы реализации регуляторов температуры аналогичны принципам реализации регуляторов уровня (рис. 2.4) с учетом управления расходом энергии в объекте.

Выбор закона регулирования зависит от инерционности объекта: чем она больше, тем закон регулирования сложнее. Постоянная времени измерительного преобразователя может быть снижена за счет увеличения скорости движения теплоносителя, уменьшения толщины стенок защитного чехла (гильзы) и т. д.

Рис. 2.5. Схема системы регулирования качества продукта:

1 - объект; 2 - анализатор качества; 3 - экстраполяционный фильтр; 4 - вычислительное устройство; 5 - регулятор

Регулирование параметров состава и качества продукта. При регулировании состава или качества продукта возможна ситуация, когда параметр (например, влажность зерна) измеряют дискретно. В этой ситуации неизбежны потеря информации и снижение точности динамического процесса регулирования. Рекомендуемая схема регулятора, стабилизирующего некоторый промежуточный параметр У(t), значение которого зависит от основного регулируемого параметра - показателя качества продукта У(t ), показана на рисунке 2.5. Вычислительное устройство 4, используя математическую модель связи между параметрами У(t) и У(t 1) непрерывно оценивает показатель качества. Экстраполяционный фильтр 3 выдает оценочный параметр качества продукта У(t 1 )в промежутках между двумя измерениями.

Контрольные вопросы и задания

1. Дайте характеристику ТП сельскохозяйственного производства. 2. Назовите виды воздействий на объект управления. 3. Изложите структуру и принципы управления ТП. 4. Каковы особенности автоматизации сельскохозяйственного производства? 5. Назовите типовые технические решения при автоматизации ТП.

 

Пожалуйста, поделитесь этим материалом в социальных сетях, если он оказался полезен!