Как ориентируются перелетные птицы.  Как ориентируются птицы? Как ориентируются перелетные птицы в пути

При изложении методов изучения перелетов птиц по­дробно разбирались общие вопросы этой проблемы, теоре­тические возможности ее решения и опыты в этом направ­лении. Мы будем неоднократно ссылаться на них, когда пе­рейдем к более близкому рассмотрению путей, которые привели к этим общим соображениям, и познакомимся не­посредственно с проведенными в этом направлении экспе­риментами.

Начнем с ранее широко распространенного мнения о том, что молодым птицам перелетные пути показывают старые птицы. Это относится к тем видам, которые мигри­руют семьями или еще более крупными сообществами, глав­ным образом ко многим крупным птицам, например ле­бедям, аистам, журавлям и гусям. У последних молодые птицы настолько нуждаются в «руководстве» старых птиц, что не решаются отлетать без них. Ряд опытов, поставлен­ных Тинеманом в 1926-1931 гг. и Шюцем в 1933 г., ука­зывает на то, что молодые аисты сами могут найти пра­вильное направление к местам зимовок. Выпущенные на волю после отлета старых птиц молодые аисты летели в основном правильно: из б. Восточной Пруссии на юго-во­сток. Правда, отклонения от нормального пролетного пути встречались при этом чаще, чем у других окольцованных аистов. Таким образом, руководство над молодыми пти­цами со стороны старых в данном случае, по-видимому, имеет значение лишь дополнительного фактора, уменьша­ющего опасность сбиться с дороги и гарантирующего со­блюдение строго ограниченных пролетных путей. Он опре­деляет так называемую тонкую ориентацию, в то время как знание направления перелета и общего «правильного» поведения во время перелета (грубая ориентация), ве­роятно, закреплено наследственностью.

Опыты с аистами были продолжены Шюцем на орни­тологической станции Росситтен в 1934 г. с целью провер­ки, постоянно ли «знание» птицами направления перелета и в тех случаях, когда различные популяции ведут себя не­одинаково, или оно изменяется в соответствии с условиями внешней среды. Как указывалось выше, все без исключе­ния восточногерманские аисты улетают в юго-восточном направлении, а западногерманские - в юго-западном. Учитывая это, молодых аистов из б. Восточной Пруссии пе­ревезли в Рейнскую область, где их вырастили и выпусти­ли на волю, когда старые птицы уже отлетели. Большая часть молодых аистов придерживалась юго-восточного на­правления (меньшая часть отклонилась на юго-запад) и, перелетев через Альпы, достигла долины р. По. По-видимому, наследственно закрепленное направление переле­та сохраняется и в измененной обстановке, а влияние на­следственности оказывается сильнее влияния ландшафта, если о таковом вообще можно говорить.

В том же 1933/34 г. и позже орнитологическая стан­ция Росситтен перевезла молодых аистов из б. Восточной Пруссии, где они многочисленны, в Центральную и Запад­ную Германию; там их содержали в условиях, по возмож­ности близких к естественным. Это мероприятие проводи­лось для решения следующих вопросов: возможности ак­климатизации аистов, выяснения направления, в котором произойдет отлет, и для проверки «приверженности» птиц к гнездовой территории. При этом были получены резуль­таты, противоречащие данным изложенного выше опыта с аистами. Большинство выращенных в Центральной и За­падной Германии аистов было обнаружено на пролете в юго-западном направлении - во Франции. Можно пред­положить, что, следуя примеру выросших на свободе аистов, они при отлете направились по этому не свойствен­ному для них пути «против воли». Факты возврата этих аистов на родину (Южная Франция) и гнездования на западе (только в одном случае) говорят в пользу пере­селения этих птиц на запад.

Подобный же результат дала попытка выращивания в Финляндии молодых крякв из Англии. Яйца этих птиц вы­сиживались в Финляндии. Вылупившиеся особи акклима­тизировались, полностью восприняли поведение финских крякв, совершали длительные миграции и большей частью возвращались следующей весной на свою но­вую родину.

То же произошло и с сизыми чайками, когда их яйца были привезены из Хиддензе в Росситтен и Силезию. Их высиживали в колониях обыкновенные чайки, которые также вскармливали птенцов. Впоследствии часть этих переселенных птиц вернулась на новую родину и даже гнездилась там.

Таким образом, отношение птиц к перелету далеко не неизменно, и они могут быстро акклиматизироваться в не­известных для них местностях. К этому выводу мы пришли и при ознакомлении с опытами по перевозке европейских птиц за океан. Приспособление к новым условиям суще­ствования может привести даже к неожиданному увеличе­нию численности, расселению и вытеснению местных ви­дов, как это отмечено у скворца в США и домового во­робья во многих частях света.

Противоречащие результаты, полученные при описанных выше опытах с аистами, могут быть объяснены тем, что ни юго-восточное, ни юго-западное направления, оче­видно, наследственно у них не закреплены. Миграции мо­лодых аистов в общем направлены к югу, и лишь в ре­зультате влияния рельефа земной поверхности, экологиче­ских условий и следования молодых птиц за старыми они в дальнейшем летят на восток или на запад (Путциг, 1939).

При описании опытов с переселением аистов мы гово­рили о возможном источнике ошибок, связанных с тем, что чуждые данной местности птицы как бы увлекаются про­летающими стаями местных представителей данного вида. Это затруднение, которое едва ли можно устра­нить, не позволило получить точные результаты и в опыте с переселением птиц, проведенном орнитологиче­ской станцией Рооситтен. В этом опыте 3000 скворцов из Прибалтики были перевезены в Силезию и Саксонию. Большая часть этих птиц, очевидно, под влиянием силезских и саксонских скворцов отлетела на юго-запад, в то время как прибалтийские скворцы обычно мигри­руют преимущественно в западном направлении. Одна­ко они перелетели за северные границы зимовок силезских и саксонских скворцов и достигли своей прежней области распространения (Кретциг и Шюц, 1936).

Объяснение ориентации как результата традиции (следование молодых особей за старыми птицами или совместный перелет стаями) невозможно для птиц, у которых различные по возрасту и полу особи мигрируют отдельными группами, а также для многочисленных ви­дов, совершающих перелеты поодиночке и ночью. Моло­дая кукушка, которую воспитывали приемные родители, принадлежащие к другому виду, совершает перелет одна и тем не менее находит правильное направление к месту зимовки. Жуланы достигают места зимовок также само­стоятельно очень сложными и часто окольными путя­ми. Не менее удивителен перелет молодых новозеланд­ских кукушек Chalcites lucidus , которые значительно позже старых птиц направляются к своим зимовкам на Соломоновых островах и островах Бисмарка, пролетая при этом над восточноавстралийским побережьем, т. е. ле­тят сначала в северо-западном, а затем в северо-восточ­ном направлении. Известно, что некоторые виды (например, пеночки, гренландская каменка, галстушник) осенью отлетают в направлении тех мест, откуда они когда-то вселились в современную гнездовую область. (Об этом уже упоминалось при анализе направлений пе­релетов.) Как находит нужное направление подавляю­щее большинство перелетных птиц - мы не знаем и по­этому вынуждены пользоваться такими абстрактными понятиями, как «чувство направления» и «восприятие географического положения», о которых речь шла выше.

Для исследования этих загадочных для человека способностей птиц пытались использовать данные опы­тов с почтовыми голубями. Как известно, эти птицы на­ходят обратный путь к своей голубятне даже из очень отдаленных местностей. Способность этих птиц находить обратный путь можно развить при помощи дрессировки и тренировки, учебных полетов и тщательного отбора. Возвращение голубей с небольших расстояний можно очень просто объяснить зрительной ориентацией. Но не так легко понять, как голуби находят обратный путь с больших расстояний, превышающих иногда несколько сот километров; это трудно объяснить даже огромной зрительной памятью почтового голубя. Поэтому голубе­воды приписывали птицам особое «чувство ориентации», позволяющее им найти голубятню. В качестве раздра­жителей, воздействующих на это чувство ориентации, они называли самые различные факторы - влияние магнитного поля Земли, электрические волны, космиче­ские лучи, метеорологические условия - или же пред­полагали наличие врожденного чувства направления. Однако все эти доводы были опровергнуты точной про­веркой при помощи физических или биологических ме­тодов исследования (насколько подобная проверка вооб­ще была возможна).

Прошло довольно много времени, прежде чем О. и К. Хейнротам (1941) удалось точно доказать, что спо­собность голубей находить дорогу домой основана ис­ключительно на зрении. С присущей им смелостью в полете птицы долго кружатся над незнакомой местно­стью и ищут до тех пор, пока вновь не попадут в такие места, над которыми они когда-то пролетали. Хорошая память облегчает им ориентацию. Это накопление и запечатление «зрительных восприятий в памяти», сохра­няющиеся в течение очень длительных промежутков времени, определяют поразительные способности голу­бей находить правильный обратный путь.

Таким образом, отпадает предположение о существо­вании врожденного или развившегося в результате об­учения особого чувства направления. Подводя итог сво­им исследованиям, О. и К.Хейнроты отмечают, что осно­ва поведения перелетных птиц совершенно отлична от этого чувства направления у почтовых голубей. До них это различие никогда так ясно не формулировалось. Поэтому его следует особенно подчеркнуть теперь, когда мы переходим к сравнению сведений, полученных при изучении поведения голубей, с соответствующими данны­ми о перелетных птицах (Согласно неопубликованным сообщениям, Крамер получил недавно экспериментальные данные, противоречащие результатам О. и К. Хейнротов и доказывающие возможность развития у поч­товых голубей чувства направления в результате обучения).

Уже давно известно, что поведение птиц в период размножения подобно поведению почтовых голубей, т. е. после насильственного удаления с гнезда они всегда вновь возвращаются к нему даже с большого расстоя­ния. Это свойство впервые использовал Лоос для провер­ки способности птиц к ориентации. В дальнейшем его примеру последовали многие другие орнитологи. Лоос экспериментировал с ласточками и скворцами, Уотсон и Лешли (1915) - с американскими крачками, которые были переброшены на 800-1200 км от своих гнездовий в Мексиканском заливе и, тем не менее, несколько дней спустя вновь возвратились к ним. Подобные результаты были получены Дирксеном (1932) для полярных и пестроносых крачек из района Халлиг Нордероог (из груп­пы Северофризских островов). В это же время братья Штиммельмайр установили, что варакушки и горихвостки-лысушки, увезенные на несколько сот километров от гнез­довых участков, возвращались через 2-3 недели. Вскоре после этогоВодзицкий и Войтусяк (1934) предприняли подобные опыты с деревенскими и городскими ласточ­ками. Одновременно Рюппель приступил к постановке многочисленных опытов, продолжавшихся несколько лет. Существенно новым в этих опытах было большое число подопытных птиц (преимущественно ласточки и скворцы, но также и вертишейки, жуланы, тетеревятни­ки, обыкновенные чайки, серые вороны и лысухи) и за­воз их в самые различные места, в том числе и в направлениях, противоположных нормальному направле­нию перелета данного вида (например, в опытах с жула­нами, которых завозили на север, запад и юго-запад вместо юго-востока). Кроме того, эти опыты производи­лись с птицами, перелет которых в норме происходит ночью; были учтены и другие специальные проблемы, на которых мы остановимся особо. В результате в боль­шинстве случаев было установлено, что птицы находят обратный путь к гнезду; правда, это выражалось в раз­личной степени, но вместе с тем не зависело от каких-либо поддающихся учету внешних факторов, например погоды, времени суток, длительности перевозок или средств транспорта; необходимым условием являлось лишь достаточно хорошее физическое состояние птицы. Из других недавно проведенных опытов по перевозке птиц назовем следующие: опыты Лэка и Локли (1938) и Гриффина (1940) с морскими птицами, из которых один буревестник (Puffinus puffinus ) за 14 дней возвра­тился из Венеции к гнезду, находящемуся в юго-западной Англии. Эта птица, следуя вдоль берегов, покрыла, оче­видно, 6000 км . Из числа Oceanodroma leucorrhoa , гнез­дящихся в Новой Шотландии и выпущенных над откры­тым морем в сотнях километров от суши, обратную до­рогу нашли 75%. Водзицкий, Пухальский и Лихе (1939) перевозили аистов на самолете из Львова в Палестину, находящуюся на пути пролета этого вида. Даже с рас­стояния, составляющего приблизительно 1/4 часть пути их миграции на зимовку, куда они все равно должны были бы лететь через 1-2 месяца, аисты вернулись за 12 дней обратно к гнездам. Шифферли (1942) отметил возвращение в трехдневный срок белобрюхих стрижей, перевезенных из Швейцарии в Лиссабон (1620км ). На­конец, следовало бы упомянуть опыт Гриффина (1943) по изучению ориентации у серебристых чаек и обыкно­венных крачек, хотя его данные о возвращении много­численных перевезенных птиц с большого расстояния (1200 км ) из неизвестных им местностей не представля­ют чего-то принципиально нового.

Мейзе считал основой ориентации прилетающих в гнездовую область перелетных птиц так называемые ки­нестетические ощущения. Согласно его представлениям, в памяти птиц должно фиксироваться направление поле­та, а может быть, даже и все их движения во время осеннего перелета. В таком случае весной птицам при­шлось бы только повторить все движения в обратном направлении, и, таким образом, летя как бы вдоль неви­димой нити, они достигли бы родины. Исходя из этого предположения, можно было бы легко объяснить нахож­дение обратной дороги подопытными птицами даже в тех случаях, когда они были завезены в местность, путь которой противоположен направлению их перелета.

Чтобы исключить возможность всяких возражений, Рюппель при перевозке непрерывно вращал подопытных скворцов, а Клюйвер наркотизировал их, прежде чем отправить в дорогу. Результат был в обоих случаях один и тот же: птицы находили обратный путь так же хоро­шо, как и контрольные. Гриффита (1940) также вращал в дороге некоторых из перевозимых птиц, а других по­мещал на короткое время в сильное магнитное поле. Эти птицы, несмотря на такое воздействие, возвращались на­зад так же уверенно и быстро, как и контрольные.

Мы слишком бы отвлеклись, если бы стали подробно описывать все опыты по перемещению насиживающих птиц. Поэтому мы ограничимся приведенными примера­ми и вытекающими из них выводами. Следует отметить общий для всех видов факт, что во многих случаях пти­цы во время гнездования вновь находят обратную доро­гу к гнездовому участку, даже когда их перевозят в не­известные местности, лежащие вне области их переле­тов. При этом исключается возможность зрительной ориентации, так же как и кинестетического управления полетом.

Так как эти опыты ограничивались периодом гнездования, то невольно возникает предположение, что спо­собность птиц к возвращению находится в тесной связи с инстинктом размножения. Для проверки этого вопро­са Дрост (1938) перевозил многочисленных ястребов-пе­репелятников, пойманных во время осеннего пролета из Скандинавии на острове Гельголанд, в Силезию и уста­новил, что старые птицы направились по «правильному пути» на свои зимовки, т. е. отклонились сильно на за­пад, пока не достигли обычного района пролетов. Молодые перепелятники полетели в обычномнаправле­нии и попали на новые места зимовок, к которым в по­следующие годы приспособились и некоторые старые пе­репелятники. Аналогичные результаты дал знаменитый опыт Рюппеля (1942), в котором 900 серых ворон были перевезены из Росситтена в Фленсбург. И в этом случае произошло переселение птиц в новую гнездовую область, так как после перевозки они придерживались обычного направления перелета (рис. 40).

Чтобы исключить возражения о том, что способность находить обратный путь свойственна только перелетным птицам, Рюппель (1937, 1940) перевез тетеревятников на большое расстояние (600 км ), после чего птицы вер­нулись если и не в самую гнездовую область, то при­мерно в ту же местность. Когда же этих птиц удаляли на небольшие расстояния (до 200 км ), они, как прави­ло, возвращались. Гете (1937) установил, что серебри­стые чайки (которые, будучи кочующими птицами, не улетают в каком-либо определенном направлении от гнездовья) в подавляющем числе случаев находят обрат­ный путь к месту гнездования. Хильпрехт (1935) пере­возил зимой на значительные расстояния многочислен­ных черных дроздов, зябликов, зеленушек, коноплянок и больших синиц из района Магдебурга, где эти виды яв­ляются большей частью оседлыми, и также очень часто наблюдал их возвращение к прежнему месту обитания. В опытах Крейца (1942) перевезенные зеленушки воз­вращались зимой даже с расстояния более 790 км . В 1939 г. Рюппель и Шифферли производили различные испытания с обыкновенными чайками и лысухами, ко­торых они перевозили с их берлинских или, соответ­ственно, швейцарских мест зимовок, после чего птицы вновь к ним возвращались (рис. 41).

Эти данные говорят о том, что способность птиц на­ходить обратный путь не зависит от периода размноже­ния и что зимой их приверженность к местообитанию так же сильна, как и летом. Связана ли эта «верность» с особенностями биологии питания, как склонны считать Рюппель и Шифферли, или же в основе ее лежат более общие причины - неизвестно. Примечательно, однако, что перевозка птиц в период перелетов может привести к смене одной гнездовой территории на другую, так же как одного места зимовки на другое. Это относится прежде всего к молодым птицам, которые в данном слу­чае ведут себя несколько иначе, чем старые. К такому же выводу пришли Рюппель и Шейн (1941) в опытах с молодыми выращенными в неволе скворцами, которые в отличие от птиц, в течение года содержавшихся в клетке, не возвращались на «родину» после перевозки на большие расстояния. Таким образом, можно сделать вывод, что у молодых птиц способность находить обрат­ную дорогу еще не выражена в такой степени, как у старых, и что для ее развития требуется известная сноровка или опыт при перелете, которые невозможно приобрести ни в течение первого года жизни, ни в неволе.

В этой связи приведем некоторые данные относитель­но общей верности птиц родной местности. Кольцевани­ем удалось доказать, что подавляющее большинство пе­релетных птиц возвращается к месту своего рождения. Многочисленные виды птиц занимают даже то же самое гнездо, что и в предыдущем году, или хотя бы то место, где оно находилось. Так поступает, во всяком случае, один из партнеров прежней насиживавшей пары, к ко­торому затем часто вновь присоединяется и второй партнер. В общем можно сказать, что приблизительно в 80% случаев верность родине является правилом, осо­бенно у старых птиц. Молодые птицы чаще расселяются в более широких пределах гнездового ареала и нередко впоследствии вновь сближаются. У форм, живущих ко­лониями, привязанность к месту рождения резко выра­жена уже на первом году жизни. Эти особенности в пове­дении молодых и старых птиц вполне соответствуют тем различиям, которые выявились в опытах по нахождению птицами обратного пути.

Наблюдающаяся в норме привязанность к местности не исключает, однако, возможности «добровольного» пе­реселения в очень отдаленные районы. В таких случаях мы говорим об «абмиграции» («Auswanderung»), кото­рая чаще всего наблюдается у уток. Причина кроется в свойственном этим птицам раннем образовании пар, происходящем еще во время осеннего перелета или на зимовке. Весной одна из птиц следует за своим партне­ром (самец может последовать за самкой, и наоборот) на его родину. При этом возможны переселения из Англии в Германию, Финляндию или СССР и из Ислан­дии в СССР.

Понятие постоянства местообитания включает и при­верженность птиц к одному и тому же месту зимовки. Это удалось установить для многих видов птиц при помощи метода кольцевания. Подобная «верность» может выра­зиться и в том, что одни и те же птицы в течение ряда лет гнездятся не только в одной и той же местности, но даже в одних и тех же определенных местах (водные птицы - у прудов, чайки - в руслах рек, мелкие певчие птицы - у мест кормления и в садах и даже у опреде­ленных окон с кормушками). Сюда же относится и отыскивание птицами одних и тех же мест отдыха, сбор­ных пунктов и т. д.

Вернемся к обсуждению способности птиц находить обратный путь. Опыты с перевозкой птиц дали ясные ре­зультаты только у старых особей, которые в это время высиживали, готовились к высиживанию или уже выве­ли птенцов. Молодые птицы, очевидно, не смогли разо­браться в изменившихся условиях, поэтому их способ­ность к ориентации кажется менее развитой. Отсюда вытекает возможность развития этой способности, хотя мы и не знаем, чем она определяется.

Поэтому попревшему остается загадочным, как птицы впервые находят свои зимовки и обратный путь на ро­дину. Не ясно также, чем руководствуются старые птицы при своих повторных миграциях из гнездовой области и обратно, особенно когда их перевозят в совершенно чуждые им местности в направлении, противоположном нормальному направлению их перелета. При этом не­вольно возникает предположение о существовании «чув­ства географического положения» («Gefuhl fur die geographische Lage»), своего рода компаса, который может быть установлен на определенные направления. Примечательно, что пролетающие птицы сохраняют прежнее направление перелета даже после их перемещения на большие рас­стояния на несколько градусов широты и долготы.

Таким образом, предварительные результаты много­численных экспериментов с перевозкой птиц сводятся к тому, что при отсутствии опыта перелетная птица летит сначала бесцельно, придерживаясь лишь определенного направления, которое свойственно всему виду или всей популяции и всегда передается по наследству. Крамер (1949) поставил опыты с выращенными в неволе жула­нами и черноголовыми славками, перелеты которых про­исходят ночью, и установил, что эти птицы придержи­ваются определенного направления перелета и при отсутствии зрительной ориентации. Правда, направление, избранное указанными особями, не вполне соответство­вало направлению перелетов их видов.

Как уже упоминалось выше и повторно отмечалось при разборе вопроса об ориентации почтовых голубей, для объяснения этой удивительной способности птиц вы­двигали самые разнообразные теории, которые подкупа­ли своей простотой, хотя и не отличались убедительно­стью. На первый взгляд, многие факты как будто под­тверждали их, но ни одна из этих теорий не выдержала более тщательной проверки. Кое-что в них, возможно, правильно, многое, повидимому, заслуживает дальней­шего изучения, но сделанные выводы поспешны и оши­бочны. Мы не беремся здесь оценивать эти теории, а лишь кратко излагаем важнейшие из них.

В связи с опытами по перевозке птиц братья Штиммельмайр установили, что на перелеты птиц, их время и направление влияет изменение положения солнца при перемещении с севера на юг. Это влияние осуществляет­ся будто бы через электрические и магнетические явле­ния в атмосфере. Именно поэтому летом птицы чувству­ют себя хорошо только в гнездовой области, а зимой - только на зимовках, а при насильственном перемещении всегда стремятся возвратиться в условия соответствующе­го положения солнца. Если в период перелета содержать птиц в железных или медных клетках,исключая якобы тем самым действие электрических и магнетических сил, то птицы не проявляют типичного беспокойства, или пе­релетного поведения. Предполагалось, что органом вос­приятия направляющих излучений служит оперение. Однако во многих случаях предположения братьев Штиммельмайр не соответствовали фактам. Кроме того, Бессерер и Дрост (1935) не смогли подтвердить результаты опытов с «отгораживающими» клетками (В более поздних сообщениях А. Штиммельмайра и некоторых его единомышленников о космических и астрономических причинах перелетов птиц не приведено никаких новых фактов, и поэтому эти работы не способствовали обогащению наших знаний).

Предположения о влиянии на птиц электрических волн нередко вызывают беспокойство и озабоченность, особенно в кругах голубеводов, которые нередко объяс­няют неудачи состязаний голубей в полете влиянием мощных радиостанций. В 1921 г. проф. Пфунгст устано­вил, что такие высокочастотные колебания, какими яв­ляются электрические волны, не могут проникнуть в те­ло голубя или другой птицы. Опыт, приобретенный во время второй мировой войны, противоречит этим дан­ным. Дрост и другие авторы (1949), бесспорно, доказа­ли, что сверхкороткие волны, применявшиеся в радар­ных установках, оказывали влияние на пролетающих птиц.

Как уже отмечалось, предположения о том, что пти­цы, возможно, реагируют на действие магнитного поля Земли, впервые были высказаны Миддендорфом в 1855 г. Но за пределами России его данные не были подтвер­ждены. 15 лет назад этим вопросом, основываясь на старой теории Вигье, занимался Штреземан. Вигье предпо­лагал, что птица обладает высокоразвитым магнитным чувством, т. е. способностью определять магнитное на­клонение и склонение. В результате птицы из любого места в состоянии возвратиться к цели прямым путем. Это предположение поддержали в 1923 и 1927 гг. физики Морен и Казамайор. Орган предполагаемого магнитного чувства Вигье искал в полукружных каналах внутренне­го уха. Штреземан обратил внимание на статолиты, на­ходящиеся в улитке, круглом и овальном окошке. Опыты с применением сильных магнитных полей, при которых присутствовал и автор, не дали удовлетворительного ре­зультата. Не был успешным и опыт Водзицкого и др. (1939) с прикреплением намагниченных железных пало­чек к голове подопытных птиц с целью исключения влияния магнитного поля Земли. Данье (1936) не без основания подвергал сомнению теорию Вигье и показал, что магнитное поле Земли, возможно, действует на птиц, но что с его помощью птицы могут определить лишь географическую широту, но не долготу своего местооби­тания. В более поздней работе (1941) он подчеркнул важность содержания подопытных птиц в клетках без железных деталей и высказал мнение о том, что воспри­нимающий раздражение орган находится не во внутрен­нем ухе. В широко разрекламированных сообщениях американских журналов, которые частично нашли отра­жение и в немецкой печати, утверждалось, будто физик Йегли (1948) в Пенсильванском университете после мно­гочисленных опытов с почтовыми голубями, наконец, объяснил их чувство «местности». Согласно его мнению, воздействия от точек пересечения одинаковых магнитных силовых линий с параллелями якобы воспринимаются определенным органом «ориентации» в теле птицы. Пред­полагают, что таким органом являются веерообразные образования, окружающие глаза птицы. Во всех случаях, когда к крыльям птиц прикрепляли небольшие «мешаю­щие» магниты, ориентация нарушалась. Не обсуждая эти сообщения, отметим только, что, согласно данным Хейнрота и бесчисленным известным фактам, ориентацию у голубей можно объяснить и без влияния магнитного поля Земли и что нарушение ориентации при прикреплении к крыльям магнитов, по-видимому, связано с изме­нением нормального состояния подопытных птиц. Такие предположения уже высказывались в отношении опытов с аистами, проведенных Водзицким и др. (1939). Крамер (1948) также отклонил гипотезу Йегли, причем в основ­ном по физическим соображениям. После первоначально положительной оценки со стороны авторитетных физиков она подверглась критике даже в Америке, так что в на­стоящее время объясненияЙегли надо считать, по мень­шей мере, сомнительными.

Таким образом, наши знания о влиянии внешних фак­торов на ориентацию птиц, о специальных органах, вос­принимающих раздражение извне, и о возможностях определения направления перелета при помощи этого «компаса» ничтожны. Неоднократно указывалось, что при разрешении этих вопросов необходимо сотрудничество физиков, анатомов и физиологов с орнитологами, изучаю­щими перелеты птиц. В противном случае можно легко ошибиться, опереться на несостоятельные предпосылки или пойти по ложному пути, который заранее может быть отвергнут специалистом в этой области. В резуль­тате страдают и наука о перелетах птиц, и смежные ис­следования.

Наблюдающееся в последние годы сотрудничество американских физиков и физиологов уже дало опреде­ленные результаты, хотя удовлетворительных данных по­ка не получено.

Закончим наш обзор по изучению ориентации птиц меткими словами Кёлера (1942): «Таким образом, мы пока не видим пути, который приблизил бы нас к разре­шению загадки, поставленной перед физиологией органов чувств фенологическим изучением перелетов птиц. Пока нам остается лишь не очень приятная обязанность от­вергнуть фантастические, надуманные гипотезы и убрать их с дороги как строительный мусор. Для начала будет правильным продолжить критическое изучение перелетов птиц, стараясь при этом накопить по возможности боль­ше данных; эти данные дадут нам возможность судить о том, чего мы можем достигнуть, основываясь только на знакомых нам психических способностях и управляемых ими известных механизмах ориентации. Если при этом окажется (что уже сейчас представляется в какой-то ме­ре вероятным), что одних этих данных недостаточно, то указания к раскрытию этой физиологической загадки «компаса» мы, возможно, найдем при изучении отрица­тельных случаев, т. е. при неудачах. Поэтому в дальней­шем последним следует уделять не меньшее внимание, чем положительным результатам».

Вы никогда не задумывались над тем, как птицы находят правильный путь, преодолевая безбрежные океаны и обширные пустыни во время своих перелётов и миграций (подробнее о )? Какими ориентирами они пользуются, какими органами чувств руководствуются? Нередко этими вопросами задаются охотники, и наша сегодняшняя публикация готова дать ответ на этот вопрос…

Важность необходимости умения ориентироваться в пространстве для птиц

Для птицы хорошо ориентироваться в пространстве – означает, прежде всего, иметь надежную информацию об окружающей их обстановке. Ведь, изменения её в одних случаях могут оказаться роковыми для птицы, в других — напротив, благоприятными, но и о тех, и о других ей нужно своевременно знать. Поведение животного будет зависеть от того, как его органы чувств воспримут эти изменения и как оценит их высший орган ориентации – мозг. Понятно, что успех в борьбе за существование будет сопутствовать той особи, чьи органы чувств и мозг быстрей оценят ситуацию и чья ответная реакция не заставит себя ждать. Вот почему, говоря об ориентации животных в пространстве, мы должны иметь в виду все 3 её компонента – ориентир раздражитель, воспринимающий аппарат, и ответную реакцию.

Несмотря на то, что в процессе эволюции все эти компоненты складывались в определенную сбалансированную систему, далеко не все ориентиры воспринимаются птицами, так как пропускная способность их органов чувств весьма ограничена.

Так, птицы воспринимают звуки частотой до 29000 ГЦ, тогда как летучие мыши – до 150 000 Гц, а насекомые – ещё выше – до 250 000 Гц. Хотя, с физической точки зрения слуховой аппарат птицы воздухе и весьма совершенен, в воде он отказывает, и звуковая волна идет к слуховой клетке неудобным путем – через всё тело, тогда как барабанная перепонка и слуховой проход оказываются полностью заблокированными. А, как бы помог рыбоядным птицам подводный слух! Известно, что дельфины с помощью слуха могут точно определять вид рыбы, её размеры, её местоположение. Слух для них вполне заменяет зрение, тем более, что возможности последнего ещё более ограничены – просматриваемое пространство, к примеру, для пустельги и сипухи, составляет 160 градусов, для голубей и воробьиных – около 300 градусов, у дятлов – до 200 градусов. А, угол бинокулярного зрения, то есть зрения двумя глазами, позволяющего особенно точно рассмотреть предмет, составляет у большинства птиц 30-40 градусов, и только у сов, с их характерным лицом – до 60 градусов.

Ещё меньше возможностей у обоняния у птиц – направление ветра, густые заросли и прочие помехи сильно затрудняют ориентацию по запахам. Даже грифы урубу, спускающиеся к падали с огромной высоты, руководствуются тонкой струйкой поднявшегося кверху запаха, и те далеко не всегда могут пользоваться этим видом ориентации.

Отсутствие необходимых органов чувств приводит к тому, что многие из природных явлений, как ориентиры, птицами не используются или используются недостаточно. Экспериментальные данные, отдельные полевые наблюдения дают весьма противоречивую картину. В определенных ситуациях, например, на ориентацию птиц влияют мощные радиостанции, однако – такое происходит не всегда и не во всех случаях. Птицы, безусловно, воспринимают изменения давления, но как тонко может барический градиент использоваться в качестве ориентира, совершенно неясно. Таким образом, ориентационные способности каждой отдельно взятой особи весьма ограничены . Между тем, птицам с их открытым образом жизни, окруженным массой врагов и других житейских неприятностей, надежная ориентация – вопрос жизни и смерти. И, зачастую их недостаточные индивидуальные возможности корректируются благодаря общению с другими особями, в стае, в гнездовой колонии.

Каждый охотник знает, что к одиночной птице гораздо легче подобраться, чем к стае, которая имеет множество ушей и глаз, и где предупреждающий крик или взлет одной особи может переполошить остальных. Различные крики, позы, яркие пятна в окраске обеспечивают птицам совместное поведение в стае и связь между ними. Создается, как бы групповая, вторичная ориентация, где возможности ориентироваться, индивидуальный опыт одной птицы значительно возрастают за счёт других птиц. Здесь уже не обязательно видеть самого хищника, достаточно слышать предупреждающий крик соседа. Конечно, сосед кричит вовсе не потому, что хочет предупредить других птиц – у него это естественная реакция на врага, однако, остальные птицы воспринимают этот крик именно, как сигнал об опасности.

Групповая или вторичная ориентация у птиц

Дело еще больше усложняется и возможности одной особи еще более возрастают, когда связь устанавливается между птицами разных видов внутри сообщества. К примеру, крик мелкой птицы на сову собирает в лесу весьма разнообразное общество – синиц, славок, поползней, зябликов, ворон, соек и даже мелких хищников. Точно такое же понимание устанавливается между куликами, чайками и воронами на морских отмелях, между различными дроздами и т.д. В лесу роль сигнальщика играет сорока – крик которой, к примеру, при приближении крупного хищника или человека воспринимается не только самыми разнообразными птицами, но и млекопитающими. Здесь групповая ориентация идет ещё дальше.

Основные факторы птиц для ориентации в пространстве

Зрение, как способ ориентации в пространстве

По остроте зрения птицы не имеют себе равных. Общеизвестны удивительные способности в этом отношении различных хищников. Сокол сапсан видит небольших птиц на расстоянии свыше километра. У большинства мелких воробьиных острота зрения в несколько раз превышает остроту зрения человека. Даже голуби различают 2 линии под углом в 29 градусов, тогда как для человека этот угол должен быть не менее 50 градусов.

К тому же, птицы обладают цветным зрением. Можно, к примеру, научить цыплят клевать красные зерна и не клевать голубые или белые, в направлении красного экрана подбегать к голубому и т.п. Косвенно это доказывается и удивительным разнообразием окраски птиц, представленной не только всеми цветами спектра, но и самыми разнообразными их сочетаниями. Окраска играет большую роль в совместном поведении птиц и используется ими, как сигнал при общении. Наконец, можно добавить, что недавними опытами польских исследователей, подтвердилась способность птиц воспринимать инфракрасную часть спектра, и следовательно — видеть в темноте. Если это действительно так, то тогда становится понятной загадочная способность птиц жить в темноте или при сумеречном освещении. Помимо сов, к этому видимо, способны и другие птицы – в условиях долгой Полярной ночи в Арктике остаются зимовать белая и тундряная куропатки, ворон, кречет, чечетка, пуночка, различные чистики.

Эти особенности зрения птиц обеспечиваются замечательным анатомическим строением их глаз. Прежде всего, птицы обладают относительно огромными глазными яблоками, составляющими у сов и соколов, к примеру, около 1/30 от веса тела, у дятла – 1/66, у сороки – 1/72. Глаз птицы имеет большое количество чувствующих клеток колбочек, необходимых для острого зрения, снабженных красными, оранжевыми, зелеными, или голубыми масляными шариками. Специалисты полагают, что масляные шарики дают возможность птице различать цвета.

Другой особенностью глаза птицы являются быстрая и точная его настройка – аккомодация . Это осуществляется изменением кривизны хрусталика и роговицы. Быстрая аккомодация позволяет, к примеру, соколу, бьющему с большой высоты по утиной стайке, отчетливо видеть птиц и правильно оценивать расстояние в любой момент своего броска. У степных птиц в сетчатке глаза имеется также особая плоска чувствительных клеток, позволяющая особенно отчетливо и на большом расстоянии рассматривать горизонт и удаленные предметы. Глаза бакланов, чистиковых, уток (о ), гагар, охотящихся за рыбой под водой, имеют специальные приспособления обеспечивающие подводное зрение птицам.

Хорошее зрение хищных птиц используется в .

Обоняние, как способ ориентации в пространстве

Обоняние птиц до сих пор остается мало исследованным и весьма загадочным. Длительное время считалось, что птицы обладают плохим обонянием, однако новые эксперименты говорят об обратном. Певчие птицы, утки, некоторые куриные хорошо различают запахи, к примеру, гвоздичного и розового масла, бензальдегида…

Утки способны находить коробку с пищей по особому запаху с расстоянии в 1,5 метра и направляться прямо к ней. Хорошим обонянием обладают грифы урубу, некоторые козодои, буревестники, чайки. Альбатросы собираются на брошенное в воду сало с расстояния в радиусе 10-ка километров. Охотникам также известны случаи, когда вороны находили закопанные в снег куски мяса. Кедровки и кукши довольно точно отыскивают в вольере кусочки пищи, запрятанные в подстилку, руководствуясь при этом исключительно своим обонянием.

Вкус, как способ ориентации в пространстве

Птицы, в общем, обладают посредственно развитым вкусом и только в отдельных группах, как например, у зерноядных птиц, хищников и благородных уток, он достигает некоторого развития.

Осязание, как способ ориентации в пространстве

Большое количество нервных окончаний в виде осязательных телец располагается в коже птиц, в основании перьев, в костях конечностей. С их помощью птица может определять, например, давление воздушной струи, силу ветра и температуру воздуха. Эти нервные окончания очень разнообразны по строению и функциям, и существует мнение, что именно среди них следует искать неизвестные пока органы восприятия электрических, магнитных полей.
Большое количество осязательных телец располагается на кончике клюва бекаса, вальдшнепа и других куликовых, добывающих пищу зондированием влажной земли, тины и грязи. У пластинчатоклювых, например, у кряквы, кончик клюва также покрыт чувствительными тельцами, отчего верхнечелюстная кость, как и у вальдшнепа, выглядит совершенно ячеистой.

Воспринимая единую по своей сути среду в виде отдельных раздражителей, ориентиров, органы пространственной ориентации птицы вычленяют только некоторые качества предмета. При этом, пространство, в котором располагаются эти ориентиры, анализируется ими также не безгранично. Отдельные ориентиры воспринимаются на больших дистанциях и имеют максимальную дальнобойность, как например звук. Другие действуют в непосредственной близости, при контакте — как осязательные тельца клюва. Действие запаха падали для парящих в воздухе грифов ограничивается узкой струйкой поднимающегося воздуха. Все органы чувств, следовательно, имеют свои пространственно ограниченные сферы действия, в пределах которых и осуществляется анализ предметов, ориентиров.

Сферы действия органов чувств имеют свою биологическую оправданную направленность. В тех случаях, когда речь идет об особенно ответственных ситуациях в жизни вида, например о ловле добычи или уклонении от опасности, одного органа чувств, к примеру зрения, слуха или обоняния, бывает недостаточно, поэтому, несколько органов чувств действуют вместе. Происходит наслаивание сфер их действия, и оказавшийся в их пределах предмет анализируется, и будет воспринят более всесторонне и точно.

Так, у сов и луней, существование которых зависит от того, как точно они определят месторасположение мыши, а действие часто происходит в густых зарослях или при ограниченной видимости поля зрения и слуха, имеется общая передняя направленность, образующаяся в результате переднего смещения глаз и ушей — такое лицо представляет собой очень характерный признак для сов и для луней.

Это дублирование органов чувств друг другом и обеспечивает цельное восприятие среды, природных ориентиров. Конечно, эту цельность обеспечивают уже не только органы чувств, но и главным образом мозг, который и объединяет информацию, поступающую по отдельным каналам, и оценивает ситуацию в целом. С работой мозга связаны, прежде всего, высшие формы ориентации, так называемый хоминг, возврат к месту гнездования искусственно удаленных птиц, ориентация при сезонных перелетах, прогнозирование погоды, счет и т.д.

Способности мозга птиц к рассудочной деятельности

Открытый подвижный образ жизни, постоянное чередование различных ориентиров, необходимость общения развили у птиц зачатки рассудочной деятельности и способность к элементарным абстракциям. Если вы подкрадываетесь к кормящимся в поле воронам и при этом для маскировки спуститесь в овражек, то птицы будут ждать вас у другого конца овражка, там, где вы должны будете очутиться, сохраняя первоначальное направление движения. Точно так же поступит гусиная стая или журавли, наблюдающие за подкрадывающейся к ним лисицы.

Однако, оценка, направленная на движение ориентира, отчасти экстраполяция его не менее важна в сложных формах ориентации нежели способность к количественной оценке ориентирования. В опытах удавалось научить кур клевать любое зерно по выбору – второе, третье и т.д., а вот голубей удалось научить различать различные комбинации зерен. Сороки и вороны также хорошо различают разные наборы предметов, и даже число людей и животных. Птицы, к примеру, без счета могут отличать 5 предметов от 6 – задача не всегда доступная даже для человека. Специальные опыты показали также, что птицы хорошо различают контуры и форму предметов, геометрических фигур и.т.д.

Эти способности играют особенно большую роль при астронавигации птиц – использовании в качестве ориентиров небесных тел.

Так, славок помещали в планетарий и следили за направлением их полета при различном положении звездного неба. Удалось доказать, что общая картина звездного неба может использоваться ими как ориентир при сезонных перелетах. Нетрудно представить себе те сложности, которые при этом возникают перед птицей – необходимость экстраполировать движение звезд, точно, до 15-20-ти минут чувствовать время, воспринимать различные комбинации созвездий, число звезд и.т.д.

Как ориентируются птицы?

Вызывает изумление способность птиц определять, когда надо лететь в родные края. В долине Нила, где зимуют журавли, климатические условия в марте и в апреле почти одинаковые. Но ежегодно в начале апреля журавли строятся клином и прилетают на север как раз тогда, когда освобождаются от снега моховые болота, где они проводят свои весенние песни и пляски. Вальдшнепы зимуют там, где снега не бывает, но как только в лесу образуются первые проталины, длинноносый красавец уже тянет над макушками берез. А гуси! Как они знают, купаясь в теплых водах южного Каспия, что на родном Таймыре вот-вот вскроются озера и надо спешить, чтобы не потерять ни одного дня короткого полярного лета?

Скорее всего сигнал «к полету» им подает готовность их организма к размножению, но только ли эта причина дает толчок к началу весеннего перелета, пока еще никто не знает. Много орнитологов занималось изучением «навигационных приборов» птиц. Для объяснения их загадочной способности лететь куда нужно предложено множество гипотез.

Долгое время натуралисты считали, что дорогу молодым показывают старые опытные птицы, не раз совершавшие перелеты с севера на юг и с юга на север. Действительно, утки, гуси, журавли путешествуют косяками, состоящими из старых и молодых птиц. В этих случаях ведущая роль стариков очевидна. Однако детальное изучение перелетов методом кольцевания показало, что старые и молодые птицы далеко не всегда летят вместе. Выяснилось, что многие молодые воробьиные птицы направляются на юг раньше взрослых. У кукушек, наоборот, отец и мать рано улетают на зимовку и оставляют воспитывать птенцов приемным родителям, зимовки которых расположены совсем в других местах.

Так же поступают и некоторые буревестники. Они выводят птенцов в глубоких норах. Отец и мать вначале очень усердно кормят птенцов, и через несколько недель те настолько обгоняют в толщине своих родителей, что уже не могут выбраться из узких нор. Старых птиц это мало волнует, и, когда наступает время перелета, они оставляют разжиревших птенцов худеть в норах и отлетают к местам зимовок.

Во всех подобных случаях взрослые птицы не могли показать дорогу молодым, и они попадают в районы зимовок совершенно самостоятельно, руководствуясь только наследственным миграционным чутьем.

Путь птиц во время их осенних и весенних перелетов почти никогда не бывает прямым, обычно в дороге они делают не один поворот. Значит, в наследство от родителей они должны получить и вехи, отмечающие каждый поворот. Какие же вехи могут служить для птиц ориентирами?

У птиц отличное зрение. Во многих случаях зрительные ориентиры бесспорно могут помочь им найти правильную дорогу. В поисках пищи для птенцов родители иногда улетают очень далеко от дома и безошибочно возвращаются к гнезду. Здесь главную роль играют зрительные ориентиры - группа берез, высокая ель, овраг, озеро, хутор или деревня. Иногда пролетные пути птиц идут вдоль широких рек, высоких горных хребтов, по берегам морей и больших озер; здесь тоже может пригодиться зрительная ориентировка. Но что может увидеть перепел, пересекающий Черное море над самыми волнами, или мелкие певчие птички, летящие ночью над безбрежным океаном?

Орнитологи искусственно ставили птиц в такие условия, в которых им в выборе правильной дороги не могли помочь зрительные ориентиры. Однако увезенные на сотни и даже тысячи километров от гнезда птицы возвращались.

Одна вертишейка, например, была поймана на гнезде в Берлинском ботаническом саду. Ее окольцевали и увезли в Грецию. Через 10 дней она вернулась домой и уселась на гнездо.

А на острове Миду, расположенном вблизи Гавайских островов, поймали на гнездах 18 альбатросов. Их самолетом доставили в шесть различных пунктов Тихого океана, " находящихся от острова на расстоянии от 200 до 6500 километров. 14 птиц вернулось на гнезда, пролетая в среднем 2500 километров в сутки. А один альбатрос, завезенный за 6500 километров на Филиппинские острова, вернулся через 32 дня.

Конечно, ни о каких зрительных ориентирах здесь говорить не приходится. Тогда возникает вопрос: какими же навигационными приборами пользовались птицы?

Еще в XIX веке А.Ф. Миддендорф предположил, что при перелетах птицы могут ориентироваться по магнитному полю Земли. Ученых вполне устраивала такая гипотеза. Если она верна, то загадочный «птичий компас» найден. Начались опыты. Птиц помещали в искусственные магнитные поля различной силы - они никак не реагировали. Подвешивали им на шею, крылья, лапы миниатюрные магнитики, которые должны были изменить ориентировку, но птицы с магнитами и без них летели в одном и том же направлении. Магнитную гипотезу отставили. Но сейчас вновь раздаются голоса, что магнитное поле должно влиять на навигационные способности животных. Неудачи опытов объясняют их несовершенством. Кто прав, покажет будущее, но окончательно списывать со счета магнитную гипотезу пока еще преждевременно.

После неудачи с магнитной гипотезой появились новые. Высказывались предположения, что птицы ориентируются при миграциях по тепловому излучению, по электрическому полю, по силам, возникающим при вращении Земли, по разнице в освещенности небосвода на юге и севере. Некоторые орнитологи считали, что у птиц вообще нет никаких навигационных приборов и они находят верный курс путем проб и ошибок. Но правильность всех этих гипотез не удалось доказать, и они не получили широкого распространения.

Со временем стали подумывать: а не могут ли птицы ориентироваться по солнцу и другим небесным телам. На первый взгляд это кажется невероятным. Ведь для того, чтобы определить широту и долготу места, нужны сложные приборы - секстан, хронометр, - навигационные таблицы; а их-то у птиц никак не может быть.

Тем не менее их небесную ориентацию решили проверить. Для этого построили круглую клетку с прозрачным дном и сетчатым потолком, через которые можно было наблюдать поведение подопытных птиц. В центре клетки установили одну жердочку и несколько штук по краям. Опыты проводили со скворцами, выращенными в неволе отдельно от взрослых птиц. Наблюдение вели весной, когда птиц охватывает перелетное беспокойство и «вольные» скворцы в данной местности стремятся на северо-запад. Как показали опыты, скворцы в клетке тоже предпочитали северо-западное направление: они все время перелетали от центральной к северо-западной жердочке и обратно. Если клетку поворачивали вокруг оси, они все равно выбирали то же самое направление. Затем клетку затянули светонепроницаемой материей, оставив только шесть окошек, через которые птицы могли видеть большую часть неба. Скворцы продолжали перелетать в том же направлении. Тогда к окошечкам приделали дверцы с зеркалами, которые при определенном повороте смещали видимые участки неба на 90°. Теперь скворцы стали перепархивать с центральной жердочки на юго-западную, то есть изменили направление как раз на тот же угол. Такое поведение скворцов наблюдалось в ясную погоду, а в пасмурную их поведение было неопределенным. В дальнейшем установили, что скворцы могут обнаруживать кормушку с зерном, руководствуясь положением солнца. Стало очевидным, что скворцы выбирают направление, ориентируясь по солнцу.

Но все же оставалось много неясного. Ведь солнце все время перемещается на небосводе, и, чтобы сохранить постоянное направление полета, птица должна уметь определять угол между направлением своего движения и положением солнца.

У многих животных, в том числе у птиц, есть внутренние биологические часы, и теоретически они могли бы решить такую задачу. Но как они это делают - пока точно неизвестно.

Позднее в круглой клетке повторили опыты с ночными путешественниками. Изучали поведение европейской славки, которая мигрирует по ночам. Опыты проводили под открытым небом и в планетарии. Выяснилось, что в пасмурную погоду славки беспорядочно порхают по клетке, не отдавая предпочтения какому-нибудь определенному направлению. Если же звезды на небе четко видны, то птицы двигаются уверенно, придерживаясь весной северного направления, а осенью южного. Эти опыты удавались даже с птицами, никогда ранее не видевшими звездного неба.

Способность птиц ориентироваться по звездам подтвердили опыты с кряковыми утками, обитающими на западном побережье Англии. Эти утки, если их выпускали из клетки, всегда летели в северо-западном направлении. Для того чтобы выяснить, какими ориентирами они пользуются, у птиц постепенно изменили суточный ритм.

Затем уток с «переставленными часами» выпустили ночью, и все они устремились на северо-запад. Совершенно очевидно, что здесь солнечные часы не играли роли и утки ориентировались по звездному небу. Какие его участки играют решающую роль, покажут дальнейшие исследования.

Итак, однозначного ответа на вопрос, как ориентируются птицы в пространстве, пока нет. Скорее всего птицы используют не один способ ориентации, а несколько.

Для птицы хорошо ориентироваться в пространстве — это прежде всего иметь надежную информацию об окружающей обстановке. Ведь изменения ее в одних случаях могут оказаться роковыми для птицы, в других, напротив, благоприятными, но и о тех и о других ей нужно своевременно знать. Поведение животного будет зависеть от того, как его органы чувств воспримут эти изменения и как оценит их высший «орган» ориентации— мозг.

Понятно, что успех в борьбе за существование будет сопутствовать той особи, чьи органы чувств и мозг быстрей оценят ситуацию и чья ответная реакция не заставит себя ждать. Вот почему, говоря об ориентации животных в пространстве, мы должны иметь в виду все три ее компонента (ориентир-раздражитель, воспринимающий аппарат, ответная реакция).

Несмотря на то что в процессе эволюции все эти компоненты складываются в определенную сбалансированную систему, далеко не все ориентиры воспринимаются, так как «пропускная способность» органов чувств весьма ограничена.

Так, птицы воспринимают звуки частотой до 29 000 гц, тогда как летучие мыши до 150 ООО гц, а насекомые еще выше — до 250 ООО гц. Хотя с физической точки зрения слуховой аппарат птицы в воздухе и весьма совершенен, в воде он отказывает, и звуковая волна идет к слуховой клетке длинным и «неудобным» путем— через все тело, тогда как барабанная перепонка и слуховой проход оказываются полностью заблокированными. А как бы помог рыбоядным птицам подводный слух!

Известно, что дельфины с помощью слуха могут точно определять вид рыбы, ее размеры, ее местоположение. Слух для них вполне заменяет зрение, тем более, что возможности последнего еще более ограничены: просматриваемое пространство, например, для пустельги и сипухи составляет 160°, для голубей и воробьиных — около 300°, у дятлов —. до 200° и т. д.

А угол бинокулярного зрения, т. е. зрения двумя глазами, позволяющее особенно точно рассмотреть предмет, составляет у большинства птиц 30—40° и только у сов с их характерным «лицом» — до 60°. Еще меньше возможностей для обоняния у птиц — направление ветра, густые заросли и пр. помехи сильно затрудняют ориентацию по запахам. Даже грифы урубу, спускающиеся к падали с огромной высоты, руководствуясь тонкой струйкой поднявшегося к верху запаха, и те далеко не всегда могут пользоваться этим видом ориентации.

Отсутствие необходимых органов чувств приводит к тому, что многие из природных явлений, как ориентиры, птицами не используются или используются недостаточно. Экспериментальные данные, отдельные полевые наблюдения дают весьма противоречивую картину. В определенных ситуациях, например, на ориентацию птиц влияют мощные радиостанции, однако не всегда, не во всех случаях. Птицы, безусловно, воспринимают изменения давления, но как тонко и может ли барический градиент 2 использоваться в качестве ориентира, совершенно неясно.

Таким образом, ориентационные способности каждой отдельно взятой особи весьма ограничены. Между тем птицам с их открытым образом жизни, окруженным массой врагов и других «житейских» неприятностей, надежная ориентация — вопрос жизни и смерти. И недостаточные индивидуальные возможности подправляются благодаря общению с другими особями, в стае, в гнездовой колонии. Каждый охотник знает, что к одиночной птице гораздо легче подобраться, чем к стае, которая имеет множество ушей и глаз и предупреждающий крик или взлет одной особи переполошит всех остальных.

Различные крики, позы, яркие пятна в окраске обеспечивают совместное поведение птиц в стае, связь между ними. Создается как бы групповая, вторичная ориентация, где возможности ориентироваться, индивидуальный опыт одной птицы значительно возрастают за счет других. Здесь уже необязательно видеть самого хищника, достаточно слышать предупреждающий крик соседа. Конечно, сосед кричит вовсе не потому, что «хочет» предупредить других: у него это естественная реакция на врага, но остальные птицы воспринимают этот крик именно как сигнал об опасности.

Дело еще более усложняется и возможности одной особи еще более возрастают, когда связь устанавливается между птицами разных видов внутри сообщества. Например, крик мелкой птицы «на сову» собирает в лесу весьма разнообразное общество: синиц, славок, поползней, зябликов, ворон, соек, даже мелких хищников. Точно такое же «понимание» устанавливается между куликами, чайками и воронами на морских отмелях, между различными дроздами и т. д. В лесу роль сигнальщика играет сорока, крик которой, например при приближении крупного хищника или человека воспринимается не только самыми разными птицами, но и млекопитающими. Здесь групповая ориентация идет еще дальше.

Зрение, слух и обоняние являются теми основными «кирпичиками», из которых складывается общее здание пространственной ориентации. По остроте зрения птицы не имеют себе равных. Общеизвестны удивительные способности в этом отношении различных хищников. Сокол-сапсан видит небольших птиц на расстоянии свыше километра. У большинства мелких воробьиных острота зрения в несколько раз превышает остроту зрения человека. Даже голуби различают две линии, идущие под углом в 29°, тогда как для человека этот угол должен быть не мене 50°.

Птицы обладают цветным зрением. Можно, например, научить цыплят клевать красные зерна и не клевать голубые или бегать в направлении красного экрана и не подбегать к голубому и т. д. Косвенно это доказывается и удивительным разнообразием окраски птиц, представленной не только всеми цветами спектра, но и самыми разнообразными их сочетаниями. Окраска играет большую роль в совместном поведении птиц и используется как сигнал при общении.

Наконец, можно добавить, что недавними опытами польских исследователей, кажется, подтвердилась способность птиц воспринимать инфракрасную часть спектра и, следовательно, видеть в темноте. Если это так, то станет понятной загадочная пока способность птиц жить в темноте или при сумеречном освещении. Помимо сов, к этому, видимо, способны и другие птицы: в условиях долгой полярной ночи в Арктике остаются зимовать белая и тундряная куропатки, ворон, кречет, чечетка, пуночка, различные чистики.

Эти особенности зрения птиц обеспечиваются замечательным анатомическим строением их глаза. Прежде всего птицы обладают относительно огромными глазными яблоками, составляющими у сов и соколов, например, около Vso веса тела, у дятла г/бб» у сороки 1/?2. Глаз птицы имеет большое количество чувствующих клеток- колбочек, необходимых для острого зрения, снабженных красными, оранжевыми, зелеными или голубыми масляными шариками.

Полагают, что масляные шарики дают возможность птице различать цвета. Другой особенностью глаза птицы является быстрая и точная его настройка — аккомодация. Это осуществляется изменением кривизны хрусталика и роговицы. Быстрая аккомодация позволяет, например, соколу, бьющему с большой высоты по утиной стайке, отчетливо видеть птицу и правильно оценивать расстояние в любой момент своего броска. У степных птиц в сетчатке глаза имеется особая полоска чувствующих клеток, позволяющая особенно отчетливо и на большом расстоянии рассматривать горизонт и удаленные предметы. Глаза бакланов, чистиковых, уток, гагар, охотящихся за рыбой под водой, имеют специальные приспособления, обеспечивающие подводное зрение.

Обоняние птиц до сих пор остается мало исследованным и весьма загадочным. Длительное время считали, что птицы обладают плохим обонянием. однако новые эксперименты говорят обратное. Певчие птицы, утки, некоторые куриные различают запахи, например, гвоздичного и розового масла, амилацетата, бензальдегида. Уткй находилц коробку с пищей по особому запаху и с расстояния в 1,5 метра направлялись прямо к ней. Хорошим обонянием обладают грифы урубу, некоторые козодои, буревестники, чайки.

Альбатросы собираются на брошенное в воду сало с расстояния в радиусе десятков километров. Охотникам известны случаи, когда вороны находили закопанные в снег куски мяса. Кедровки и кукши довольно точно отыскивают в вольере пахучие куски пищи, запрятанные в подстилке, руководствуясь, видимо, также исключительно обонянием.

Птицы, в общем, обладают посредственно развитым вкусом и только в отдельных группах, как, например, у зерноядных птиц, хищников и благородных уток он достигает некоторого развития.

Большое количество нервных окончаний в виде осязательных телец располагается в коже птиц, в оснований перьев, в костях конечностей. С их помощью птица может определять, например, давление воздушной струй, силу ветра, температуру и т. д. Эти нервные окончания очень разнообразны по строению и функциям, и есть мнение, что именно среди них следует искать неизвестные пока органы восприятия электрических, магнитных полей и т. д.

Большое количество осязательных телец располагается на кончике клюва бекаса, вальдшнепа и других куликов, добывающих пищу зондированием влажной земли, тины и грязи. У пластинчатоклювых, например у кряквы, кончик клюва также покрыт чувствительными тельцами, отчего верхнечелюстная кость, как и у вальдшнепа, выглядит совершенно ячеистой.

Воспринимая единую по своей сути среду в виде отдельных раздражителей, ориентиров, органы пространственной ориентации вычленяют только некоторые качества предметов. При этом пространство, в котором располагаются эти ориентиры, анализируется также не безгранично. Отдельные ориентиры воспринимаются на больших дистанциях и имеют максимальную «дальнобойность», как, например, звук, другие действуют в непосредственной близости, при контакте, как, например, осязательные тельца клюва.

Действие запаха падали для парящих в воздухе грифов ограничивается узкой струйкой поднимающегося воздуха. Все органы чувств, следовательно, имеют свои пространственно ограниченные сферы действия, в пределах которых и осуществляется анализ предметов, ориентиров.

Сферы действия органов чувств имеют свою биологически оправданную направленность. В тех случаях, когда речь идет об особенно ответственных ситуациях в жизни вида, например о ловле добычи или уклонении от опасности, одного органа чувств, допустим зрения, слуха или обоняния, бывает недостаточно, поэтому несколько органов чувств действуют вместе. Происходит налегание сфер.

У степных птиц в сетчатке глаза имеется особая полоска чувствующих клеток, позволяющая особенно отчетливо видеть на большом расстоянии.

Так, у сов и луней, существование которых зависит от того, как точно они определят местоположение мыши, а действие часто происходит в густых зарослях или при ограниченной видимости поля зрения и слуха имеют общую, переднюю направленность. Образующееся в результате переднего сокращення глаз и ушей «лицо» представляет собой очень характерный признак и для сов и для луней.

Это дублирование органов чувств друг другом и обеспечивает цельное восприятие среды, природных ориентиров. Конечно, эту цельность обеспечивают уже не только органы чувств, но главным образом мозг, который и объединяет информацию, поступающую по отдельным «каналам», и оценивает ситуацию в целом.

С работой мозга связаны прежде всего высшие формы ориентации, так называемый «хоминг» (возврат к месту гнездовья искусственно удаленных птиц), ориентация при сезонных перелетах, прогнозирование погоды, счет и т. д.
Открытый подвижный образ жизни, постоянное чередование различных ориентиров, необходимость общения развили у птиц «зачатки рассудочной деятельности и способность к элементарным абстракциям.

Если вы подкрадываетесь к кормящимся на поле воронам и при этом для маскировки опустились в овражек, то птицы будут ждать вас у другого конца овражка, там, где вы должны очутиться, сохраняя первоначальное направление движения. Точно так же поступит гусиная стая или журавли, наблюдающие за подкрадывающейся к ним лисой.

Однако оценка направления движения ориентира, отчасти экстраполяция его, не менее важна в сложных формах ориентации, нежели способность к количественной оценке ориентиров.

В опытах удавалось научить кур клевать любое зерно по выбору — второе, третье и т. д., голубей — отличать различные комбинации зерен. Сороки и вороны хорошо различают разные наборы предметов, например, число людей, животных. Птицы, например, без счета могут отличать 5 предметов от 6 — задача, не всегда доступная даже для человека. Специальные опыты показали также, что птицы хорошо различают контуры и форму предметов, геометрических фигур и пр.

Эти способности играют особенно большую роль при астронавигации птиц — использовании в качестве ориентиров небесных светил.

Славок помещали в планетарий и следили за направлением их полета при различном положении звездного неба. Так удалось доказать, что общая картина звездного неба может использоваться как ориентир при сезонных перелетах. Нетрудно представить себе те сложности, которые при атом возникают перед птицей: необходимость экстраполировать движение звезд, точно, до 15—20 минут, Хорошим обонянием обладают чайки; клуша.

Несколько проще с этой точки зрения ориентация в светлое время суток, по солнцу. Но здесь, перед птицей возникает необходимость оценивать угловое смещение солнца и иметь весьма точные «внутренние часы». Это все же проще, чем использование такого ориентира, как звезды, и быть может поэтому эта точка зрения имеет большее число приверженцев и менее спорна. Имеются попытки объяснить с помощью солнечной ориентации ночные.перелеты птиц: в ночное время птицы летят по тому направлению, которое они избрали днем при свете солнца.

Помимо этих общих «универсальных» ориентиров, большое значение могут иметь другие, местные. Там, где дуют постоянные ветры, птицы могут использовать направление ветра. Направление горных цепей, русла рек, морские побережья,- даже гребни волн могут также играть роль таких ориентиров.

Несмотря на двухвековую историю изучения перелетов птиц, вопрос далеко не ясен и в наши дни. Потерпели неудачу.попытки объяснить ориентацию при перелетах исключительно одним ориентиром: кориолисовыми силами. возникающими от вращения земли, магнитными или электрическими полями и т. д. Экспериментальная проверка их показала противоречивые результаты, видимо, из-за того, что при перелетах используется комплекс ориентиров, а не один, ориентир. В сущности бесполезными оказались и поиски «органа ориентации».

В окончательной оценке ситуации решающее значение имеет мозг, и разгадка «механизма» ориентации при перелетах кроется в изучении мозговой деятельности птиц.

Совершенно особую, не менее интересную, категорию явлений составляет «хоминг» — возвращение к «дому» искусственно удаленных птиц. Сорокалетней давности опыты с крачками показали, что, удаленные на 1200 километров от гнездовий, они через несколько дней возвращаются назад. Ласточки, скворцы, жуланы, вертишейки и другие птицы также обнаружили эту способность. Буревестник за 14 дней возвратился из Венеции, куда он был завезен, к своему гнезду в Шотландии, покрыв 6000 километров. Белобрюхий стриж вернулся из Лиссабона в Швейцарию в трехдневный срок.

Механизмы хоминга в настоящее время также неясны. Пока что мы можем сказать, что при этом, видимо, в большей степени используются местные ориентиры, причем, вероятно, целый их комплекс. Особенно большое значение имеют экстраполяция и способность к количественной оценке явлений, внутренние часы и такое важное свойство деятельности мозга, как память.

«Пространственная ориентация птиц — вопрос чрезвычайно интересный на всех уровнях ориентации, от простейших до наиболее сложных. Он приобретает большое значение сейчас в свярзи с бионикой и проблемой управления поведением животных.

Бионику интересуют средства и пути зрительной, слуховой и других видов ориентации, работа вспомогательных структур, обесточивающих лучший прием и обработку сигнала, оценка конечной информации в мозговых центрах. Птицы особенно привлекают биоников из-за миниатюрности, высокой надежности и производительности, широкого спектра действия, экономичности и других качеств их органов чувств, на много превосходящих все то, чем располагает современная техника.

Создавая искусственные ориентиры, человек вызывает у животных в природных условиях необходимые ему двигательные реакции. В одних случаях таким путем удается привлечь множество животных на ограниченную территорию, в других, напротив, рассеять, отпугнуть их от тех мест, где они нежелательны.

В настоящее время идут энергичные поиски таких средств управления поведением животных и, в частности, птиц. Уже найдены акустические, оптические и обонятельные ориентиры, часть из которых используется в практике. Охотничий промысел и рыбное хозяйство, борьба с вредными насекомыми, защита человека от кровососов — вот далеко не полный список отраслей, где они могут быть использованными. Наконец, это открывает возможности разумного, рационального регулирования численности природных популяций.

Относительно небольшое число видов и особей гусеобразных, поганок, голенастых, хищников, куликов, чаек, воробьиных зимуют в южных районах бывшего СССР по берегам Черного моря, в Закавказье, на юге Каспия, в некоторых районах Средней Азии. Подавляющее большинство видов и особей наших птиц зимует за пределами страны на Британских островах и в Южной Европе, в Средиземноморье, во многих районах Африки и Азии. Например, в Южной Африке зимуют многие мелкие птицы из европейской части бывшего СССР (пеночки, камышовки, ласточки и др.), пролетающие от мест зимовок до 9-10 тыс. км. Пролетные пути некоторых видов еще длиннее. Гнездящиеся по побережьям Баренцева моря полярные крачки - Sterna paradisea зимуют у побережья Австралии, пролетая лишь в одну сторону до 16-18 тыс. км. Почти такой же пролетный путь у гнездящихся в тундрах Сибири бурокрылых ржанок - Charadrius dominica, зимующих в Новой Зеландии, и у колючехвостых стрижей - Hirundapus caudacutus, из Восточной Сибири отлетающих в Австралию и Тасманию (12-14 тыс. км); часть пути они пролетают над морем.

Во время миграций птицы летят с обычными скоростями, чередуя перелет с остановками для отдыха и кормежки. Осенние миграции обычно совершаются с меньшей скоростью, чем весенние. Мелкие воробьиные птицы при миграциях за сутки перемещаются в среднем на 50-100 км, утки - на 100-500 км и т. п. Таким образом, в среднем за сутки птицы тратят на перелет относительно небольшое время, иногда всего лишь 1-2 ч. Однако некоторые даже мелкие наземные птицы, например американские древесные славки - Dendroica, мигрируя над океаном, способны пролетать без остановки 3-4 тыс. км. за 60-70 ч непрерывного полета. Но такие напряженные миграции выявлены лишь у небольшого числа видов.

Высота полета зависит от многих факторов: вида птицы и пелетных возможностей, погоды, скорости воздушных потоков на разной высоте и т. п. Наблюдениями с самолетов и с помощью радаров было установлено, что миграции большинства видов проходят на высоте 450-750 м; отдельные стаи могут пролетать и совсем низко над землей. Значительно реже пролетных журавлей, гусей, куликов, голубей отмечали на высотах до 1,5 км и выше. В горах стаи летящих куликов, гусей, журавлей отмечали даже на высоте 6- 9 км над уровнем моря (на 9-м километре содержание кислорода на 70% меньше, чем на уровне моря). Водные птицы (гагары, поганки, чистиковые) часть пролетного пути проплывают, а коростель проходит пешком. Многие виды птиц, обычно активные только в дневное время, мигрируют ночью, а днем кормятся (многие воробьиные, кулики и др.), другие и в период миграции сохраняют обычную суточную ритмику активности.

У перелетных птиц в период подготовки к миграциям изменяется характер обмена веществ, приводящий при усиленном питании к накоплению значительных жировых запасов. При окислении жиры выделяют почти вдвое больше энергии, чем углеводы и белки. Резервный жир по мере надобности поступает в кровь и доставляется в работающие мышцы. При окислении жиров образуется вода, чем компенсируется потеря влаги при дыхании. Особенно велики запасы жира у видов, вынужденных во время миграции длительное время лететь без остановок. У уже упоминавшихся американских древесных славок перед полетом над морем запасы жира могут составлять до 30-35% их массы. После такого -броска- птицы усиленно кормятся, восстанавливая энергетические резервы, и опять продолжают перелет.

Изменение характера обмена, подготавливающего организм к перелету или к условиям зимовки, обеспечивается сочетанием внутренней годовой ритмики физиологических процессов и сезонных изменений условий жизни, в первую очередь изменением длины светового дня (удлинением - весной и укорочением - в конце лета); вероятно, определенное значение имеет и сезонное изменение кормов. У накопивших энергетические ресурсы птиц под влиянием внешних стимулов (изменение длины дня, погода, недостаток кормов) наступает так называемое -перелетное беспокойство-, когда поведение птицы резко меняется и возникает стремление к миграции.

У подавляющего большинства кочующих и перелетных птиц отчетливо выражен гнездовой консерватизм . Он проявляется в том, что размножавшиеся птицы на следующий год возвращаются с зимовки на место предыдущего гнездования и либо занимают старое гнездо, либо поблизости строят новое. Молодые, достигшие половой зрелости птицы возвращаются на свою родину, но чаще поселяются на каком-то расстоянии (сотни метров - десятки километров) от того места, где они вылупились ( рис. 63). Менее отчетливо выраженный у молодых птиц гнездовой консерватизм позволяет виду заселять новые, пригодные для него территории и, обеспечивая перемешивание популяции, предотвращает инбридинг (близкородственное скрещивание). Гнездовой же консерватизм взрослых птиц позволяет им гнездиться в хорошо знакомом районе, что облегчает и поиски пищи, и спасение от врагов. Существует и постоянство мест зимовок.

Как птицы ориентируются во время миграций, как выбирают направление перелета, попадая в определенный район на зимовку и возвращаясь за тысячи километров на место гнездования- Несмотря на разнообразные исследования, ответа на этот вопрос пока нет. Очевидно, у перелетных птиц есть врожденный миграционный инстинкт, позволяющий им выбирать нужное общее направление миграции. Однако этот врожденный инстинкт под влиянием условий среды, видимо, может быстро изменяться.

Яйца оседлых английских крякв были инкубированы в Финляндии. Выросшие молодые кряквы, как и местные утки, осенью улетели на зимовку, а следующей весной значительная их часть (36 из 66) вернулась в Финляндию в район выпуска и там загнездилась. В Англии ни одна из этих птиц не была обнаружена. Черные казарки перелетные. Их яйца инкубировались в Англии, и молодые птицы осенью вели себя на новом месте как оседлые птицы. Таким образом, объяснить и само стремление к миграции, и ориентировку во время перелета только врожденными рефлексами пока нельзя. Экспериментальные исследования и полевые наблюдения свидетельствуют, что мигрирующие птицы способны к астронавигации: к выбору нужного направления перелета по положению солнца, луны и звезд. При пасмурной погоде или при изменении картины звездного неба при опытах в планетарии способность к ориентации заметно ухудшалась.

 

Пожалуйста, поделитесь этим материалом в социальных сетях, если он оказался полезен!